28 research outputs found

    5G Outlook – Innovations and Applications

    Get PDF
    5G Outlook - Innovations and Applications is a collection of the recent research and development in the area of the Fifth Generation Mobile Technology (5G), the future of wireless communications. Plenty of novel ideas and knowledge of the 5G are presented in this book as well as divers applications from health science to business modeling. The authors of different chapters contributed from various countries and organizations. The chapters have also been presented at the 5th IEEE 5G Summit held in Aalborg on July 1, 2016. The book starts with a comprehensive introduction on 5G and its need and requirement. Then millimeter waves as a promising spectrum to 5G technology is discussed. The book continues with the novel and inspiring ideas for the future wireless communication usage and network. Further, some technical issues in signal processing and network design for 5G are presented. Finally, the book ends up with different applications of 5G in distinct areas. Topics widely covered in this book are: • 5G technology from past to present to the future• Millimeter- waves and their characteristics• Signal processing and network design issues for 5G• Applications, business modeling and several novel ideas for the future of 5

    5G Outlook – Innovations and Applications

    Get PDF
    5G Outlook - Innovations and Applications is a collection of the recent research and development in the area of the Fifth Generation Mobile Technology (5G), the future of wireless communications. Plenty of novel ideas and knowledge of the 5G are presented in this book as well as divers applications from health science to business modeling. The authors of different chapters contributed from various countries and organizations. The chapters have also been presented at the 5th IEEE 5G Summit held in Aalborg on July 1, 2016. The book starts with a comprehensive introduction on 5G and its need and requirement. Then millimeter waves as a promising spectrum to 5G technology is discussed. The book continues with the novel and inspiring ideas for the future wireless communication usage and network. Further, some technical issues in signal processing and network design for 5G are presented. Finally, the book ends up with different applications of 5G in distinct areas. Topics widely covered in this book are: • 5G technology from past to present to the future• Millimeter- waves and their characteristics• Signal processing and network design issues for 5G• Applications, business modeling and several novel ideas for the future of 5

    4G Technology Features and Evolution towards IMT-Advanced

    Get PDF
    Kiinteiden- ja mobiilipalveluiden kysyntä kasvaa nopeasti ympäri maailmaa. Älykkäiden päätelaitteiden, kuten iPhone:n ja Nokia N900:n markkinoilletulo yhdistettynä näiden korkeaan markkinapenetraatioon ja korkealuokkaiseen käyttäjäkokemukseen lisäävät entisestään palveluiden kysyntää ja luovat tarpeen jatkuvalle innovoinnille langattomien teknologioiden alalla tavoitteena lisäkapasiteetin ja paremman palvelunlaadun tarjoaminen. Termi 4G (4th Generation) viittaa tuleviin neljännen sukupolven mobiileihin langattomiin palveluihin, jotka International Telecommunications Union:in Radiocommunication Sector (ITU-R) on määritellyt ja nimennyt International Mobile Telecommunications-Advanced (IMT-Advanced). Nämä ovat järjestelmiä, jotka pitävät sisällään IMT:n ne uudet ominaisuudet, jotka ylittävät IMT-2000:n vaatimukset. Long Term Evolution-Advanced (LTE-Advanced) ja IEEE 802.16m ovat IMT-A sertifiointiin lähetetyt kaksi pääasiallista kandidaattiteknologiaa. Tässä diplomityössä esitellään kolmannen sukupolven järjestelmien kehityspolku LTE:hen ja IEEE 802.16e-2005 asti. Lisäksi työssä esitetään LTE-Advanced:n ja IEEE 802.16m:n uudet vaatimukset ja ominaisuudet sekä vertaillaan näiden lähestymistapoja IMT-A vaatimusten täyttämiseksi. Lopuksi työssä luodaan katsaus LTE ja IEEE 802.16e-2005 (markkinointinimeltään Mobile WiMAX) -järjestelmien markkinatilanteeseen.The demand for affordable bandwidth in fixed and mobile services is growing rapidly around the world. The emergence of smart devices like the iPhone and Nokia N900, coupled with their high market penetration and superior user experience is behind this increased demand, inevitably driving the need for continued innovations in the wireless data technologies industry to provide more capacity and higher quality of service. The term "4G" meaning the 4th Generation of wireless technology describes mobile wireless services which have been defined by the ITU's Radiocommunication Sector (ITU-R) and titled International Mobile Telecommunications-Advanced (IMT-Advanced). These are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Long Term Evolution-Advanced (LTE-Advanced) and IEEE 802.16m are the two main candidate technologies submitted for IMT-Advanced certification. This thesis reviews the technology roadmap up to and including current 3G systems LTE from the 3rd Generation Partnership Project (3GPP) and IEEE 802.16e-2005 from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, new requirements and features for LTE-Advanced and IEEE 802.16m as well as a comparative approach towards IMT-Advanced certification are presented. Finally, the thesis concludes with a discussion on the market status and deployment strategies of LTE and IEEE 802.16e-2005, or Mobile WiMAX as it is being marketed

    Analog radio over fiber solutions for multi-band 5g systems

    Get PDF
    This study presents radio over fiber (RoF) solutions for the fifth-generation (5G) of wireless networks. After the state of the art and a technical background review, four main contributions are reported. The first one is proposing and investigating a RoF technique based on a dual-drive Mach-Zehnder modulator (DD-MZM) for multi-band mobile fronthauls, in which two radiofrequency (RF) signals in the predicted 5G bands individually feed an arm of the optical modulator. Experimental results demonstrate the approach enhances the RF interference mitigation and can prevail over traditional methods. The second contribution comprises the integration of a 5G transceiver, previously developed by our group, in a passive optical network (PON) using RoF technology and wavelength division multiplexing (WDM) overlay. The proposed architecture innovates by employing DD-MZM and enables to simultaneously transport baseband and 5G candidate RF signals in the same PON infrastructure. The proof-of-concept includes the transmission of a generalized frequency division multiplexing (GFDM) signal generated by the 5G transceiver in the 700 MHz band, a 26 GHz digitally modulated signal as a millimeter-waves 5G band, and a baseband signal from an gigabit PON (GPON). Experimental results demonstrate the 5G transceiver digital performance when using RoF technology for distributing the GFDM signal, as well as Gbit/s throughput at 26 GHz. The third contribution is the implementation of a flexible-waveform and multi-application fiber-wireless (FiWi) system toward 5G. Such system includes the FiWi transmission of the GFDM and filtered orthogonal frequency division multiplexing (F-OFDM) signals at 788 MHz, toward long-range cells for remote or rural mobile access, as well as the recently launched 5G NR standard in microwave and mm-waves, aiming enhanced mobile broadband indoor and outdoor applications. Digital signal processing (DSP) is used for selecting the waveform and linearizing the RoF link. Experimental results demonstrate the suitability of the proposed solution to address 5G scenarios and requirements, besides the applicability of using existent fiber-to-the-home (FTTH) networks from Internet service providers for implementing 5G systems. Finally, the fourth contribution is the implementation of a multi-band 5G NR system with photonic-assisted RF amplification (PAA). The approach takes advantage of a novel PAA technique, based on RoF technology and four-wave mixing effect, that allows straightforward integration to the transport networks. Experimental results demonstrate iv uniform and stable 15 dB wideband gain for Long Term Evolution (LTE) and three 5G signals, distributed in the frequency range from 780 MHz to 26 GHz and coexisting in the mobile fronthaul. The obtained digital performance has efficiently met the Third-Generation Partnership Project (3GPP) requirements, demonstrating the applicability of the proposed approach for using fiber-optic links to distribute and jointly amplify LTE and 5G signals in the optical domain.Agência 1Este trabalho apresenta soluções de rádio sobre fibra (RoF) para aplicações em redes sem fio de quinta geração (5G), e inclui quatro contribuições principais. A primeira delas refere-se à proposta e investigação de uma técnica de RoF baseada no modulador eletroóptico de braço duplo, dual-drive Mach-Zehnder (DD-MZM), para a transmissão simultânea de sinais de radiofrequência (RF) em bandas previstas para redes 5G. Resultados experimentais demonstram que o uso do DD-MZM favorece a ausência de interferência entre os sinais de RF transmitidos. A segunda contribuição trata da integração de um transceptor de RF, desenvolvido para aplicações 5G e apto a prover a forma de onda conhecida como generalized frequency division multiplexing (GFDM), em uma rede óptica passiva (PON) ao utilizar RoF e multiplexação por divisão de comprimento de onda (WDM). A arquitetura proposta permite transportar, na mesma infraestrutura de rede, sinais em banda base e de radiofrequência nas faixas do espectro candidatas para 5G. A prova de conceito inclui a distribuição conjunta de três tipos de sinais: um sinal GFDM na banda de 700 MHz, proveniente do transceptor desenvolvido; um sinal digital na frequência de 26 GHz, assumindo a faixa de ondas milimétricas; sinais em banda base provenientes de uma PON dedicada ao serviço de Internet. Resultados experimentais demonstram o desempenho do transceptor de RF ao utilizar a referida arquitetura para distribuir sinais GFDM, além de taxas de transmissão de dados da ordem de Gbit/s na faixa de 26 GHz. A terceira contribuição corresponde à implementação de um sistema fibra/rádio potencial para redes 5G, operando inclusive com o padrão ―5G New Radio (5G NR)‖ nas faixas de micro-ondas e ondas milimétricas. Tal sistema é capaz de prover macro células na banda de 700 MHz para aplicações de longo alcance e/ou rurais, utilizando sinais GFDM ou filtered orthogonal frequency division multiplexing (F-OFDM), assim como femto células na banda de 26 GHz, destinada a altas taxas de transmissão de dados para comunicações de curto alcance. Resultados experimentais demonstram a aplicabilidade da solução proposta para redes 5G, além da viabilidade de utilizar redes ópticas pertencentes a provedores de Internet para favorecer sistemas de nova geração. Por fim, a quarta contribuição trata da implementação de um sistema 5G NR multibanda, assistido por amplificação de RF no domínio óptico. Esse sistema faz uso de um novo método de amplificação, baseado no efeito não linear da mistura de quatro ondas, que vi permite integração direta em redes de transporte envolvendo rádio sobre fibra. Resultados experimentais demonstram ganho de RF igual a 15 dB em uma ampla faixa de frequências (700 MHz até 26 GHz), atendendo simultaneamente tecnologias de quarta e quinta geração. O desempenho digital obtido atendeu aos requisitos estabelecidos pela 3GPP (Third-Generation Partnership Project), indicando a aplicabilidade da solução em questão para distribuir e conjuntamente amplificar sinais de RF em enlaces de fibra óptica

    Mobile 5G millimeter-wave multi-antenna systems

    Get PDF
    In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Universitat Politècnica de Catalunya's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.Tesi en modalitat de compendi de publicacionsMassive antenna architectures and millimeter-wave bands appear on the horizon as the enabling technologies of future broadband wireless links, promising unprecedented spectral efficiency and data rates. In the recently launched fifth generation of mobile communications, millimetric bands are already introduced but their widespread deployment still presents several feasibility issues. In particular, high-mobility environments represent the most challenging scenario when dealing with directive patterns, which are essential for the adequate reception of signals at those bands. Vehicular communications are expected to exploit the full potential of future generations due to the massive number of connected users and stringent requirements in terms of reliability, latency, and throughput while moving at high speeds. This thesis proposes two solutions to completely take advantage of multi-antenna systems in those cases: beamwidth adaptation of cellular stations when tracking vehicular users based on positioning and Doppler information and a tailored radiation diagram from a panel-based system of antennas mounted on the vehicle. Apart from cellular base stations and vehicles, a third entity that cannot be forgotten in future mobile communications are pedestrians. Past generations were developed around the figure of human users and, now, they must still be able to seamlessly connect with any other user of the network and exploit the new capabilities promised by 5G. The use of millimeter-waves is already been considered by handset manufacturers but the impact of the user (and the interaction with the phone) is drastically changed. The last part of this thesis is devoted to the study of human user dynamics and how they influence the achievable coverage with different distributed antenna systems on the phone.Les arquitectures massives d'antenes i les bandes mil·limètriques apareixen a l'horitzó com les tecnologies que impulsaran els futurs enllaços sense fils amb gran ample de banda i prometen una eficiència espectral i velocitat de transmissió sense precedents. A la recent cinquena generació de comunicacions mòbils, les bandes mil·limètriques ja en són una part constitutiva però el seu desplegament encara presenta certes dificultats. En concret, els entorns d'alta mobilitat representen el major repte quan es fan servir diagrames de radiació directius, els quals són essencials per una correcta recepció del senyal en aquestes bandes. S'espera que les comunicacions vehiculars delimitin les capacitats de les xarxes en futures generacions degut al gran nombre d'usuaris simultanis i els requeriments estrictes en termes de fiabilitat, retard i flux de dades mentre es mouen a grans velocitats. Aquesta tesi proposa dues solucions per tal d'explotar al màxim els sistemes de múltiples antenes en tals casos: un ample de feix adaptatiu de les estacions bases quan estiguin fent el seguiment d'un vehicle usuari basat en informació de la posició i el Doppler i el disseny d'un diagrama de radiació adequat al costat del vehicle basat en una estructura de múltiples panells muntats a l'estructura del mateix. A més de les estacions base i els vehicles, un tercer element que no pot ser obviat en aquests escenaris són els vianants. Les generacions anteriors van ser desenvolupades al voltant de la figura d'usuaris humans i ara han de seguir tenint la capacitat de connexió ininterrumpuda amb la resta d'usuaris i explotar les capacitats de 5G. L'ús de frequències mil·limètriques també es té en compte en la fabricació de telèfons mòbils però l'impacte de l'usuari és completament diferent. La última part de la tesis tracta l'estudi de les dinàmiques de l'usuari humà i com influeixen en la cobertura amb diferent sistemes distribuïts d'antenes.Postprint (published version

    A Localization System for Optimizing the Deployment of Small Cells in 2-Tier Heterogeneous Wireless Networks

    Get PDF
    Due to the ever growing population of mobile device users and expansion on the number of devices and applications requiring data usage, there is an increasing demand for improved capacity in wireless cellular networks. Cell densification and 2-tier heterogeneous networks (HetNets) are two solutions which will assist 5G systems in meeting these growing capacity demands. Small-cell deployment over existing heterogeneous networks have been considered by researchers. Different strategies for deploying these small-cells within the existing network among which are random, cell-edge and high user concentration (HUC) have also been explored. Small cells deployed on locations of HUC offloads traffic from existing network infrastructure, ensure good Quality of Service (QoS) and balanced load in the network but there is a challenge of identifying HUC locations. There has been considerable research performed into techniques for determining user location and cell deployment. Currently localization can be achieved using time dependent methods such as Time of Arrival (ToA), Time Difference of Arrival (TDoA), or Global Positioning Systems (GPS). GPS based solutions provide high accuracy user positioning but suffer from concerns over user privacy, and other time dependent approaches require regular synchronization which can be difficult to achieve in practice. Alternatively, Received Signal Strength (RSS) based solutions can provide simple anonymous user data, requiring no extra hardware within the mobile handset but often rely on triangulation from adjacent Base Stations (BS). In mobile cellular networks such solutions are therefore often only applicable near the cell edge, as installing additional BS would increase the complexity and cost of a network deployment. The work presented in this thesis overcomes these limitations by providing an observer system for wireless networks that can be used to periodically monitor the cell coverage area and identify regions of high concentrations of users for possible small cell deployment in 2-tier heterogeneous networks. The observer system comprises of two collinear antennas separated by λ/2. The relative phase of each antenna was varied using a phase shifter so that the combined output of the two antennas were used to create sum and difference radiation patterns, and to steer the antenna radiation pattern creating different azimuth positions for AoA estimation. Statistical regression analysis was used to develop range estimation models based on four different environment empirical pathloss models for user range estimation. Users were located into clusters by classifying them into azimuth-range classes and counting the number of users in each class. Locations for small cell deployment were identified based on class population. BPEM, ADEM, BUEM, EARM and NLOS models were developed for more accurate range estimation. A prototype system was implemented and tested both outdoor and indoor using a network of WiFi nodes. Experimental results show close relationship with simulation and an average PER in range estimation error of 80% by applying developed error models. Based on both simulation and experiment, system showed good performance. By deploying micro-, pico-, or femto-cells in areas of higher user concentration, high data rates and good quality of service in the network can be maintained. The observer system provides the network manager with relative angle of arrival (AoA), distance estimation and relative location of user clusters within the cell. The observer system divides the cell into a series of azimuthal and range sectors, and determines which sector the users are located in. Simulation and a prototype design of the system is presented and results have shown system robustness and high accuracy for its purpose

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    New Waves of IoT Technologies Research – Transcending Intelligence and Senses at the Edge to Create Multi Experience Environments

    Get PDF
    The next wave of Internet of Things (IoT) and Industrial Internet of Things (IIoT) brings new technological developments that incorporate radical advances in Artificial Intelligence (AI), edge computing processing, new sensing capabilities, more security protection and autonomous functions accelerating progress towards the ability for IoT systems to self-develop, self-maintain and self-optimise. The emergence of hyper autonomous IoT applications with enhanced sensing, distributed intelligence, edge processing and connectivity, combined with human augmentation, has the potential to power the transformation and optimisation of industrial sectors and to change the innovation landscape. This chapter is reviewing the most recent advances in the next wave of the IoT by looking not only at the technology enabling the IoT but also at the platforms and smart data aspects that will bring intelligence, sustainability, dependability, autonomy, and will support human-centric solutions.acceptedVersio
    corecore