6,513 research outputs found

    Learning programs by learning from failures

    Full text link
    We describe an inductive logic programming (ILP) approach called learning from failures. In this approach, an ILP system (the learner) decomposes the learning problem into three separate stages: generate, test, and constrain. In the generate stage, the learner generates a hypothesis (a logic program) that satisfies a set of hypothesis constraints (constraints on the syntactic form of hypotheses). In the test stage, the learner tests the hypothesis against training examples. A hypothesis fails when it does not entail all the positive examples or entails a negative example. If a hypothesis fails, then, in the constrain stage, the learner learns constraints from the failed hypothesis to prune the hypothesis space, i.e. to constrain subsequent hypothesis generation. For instance, if a hypothesis is too general (entails a negative example), the constraints prune generalisations of the hypothesis. If a hypothesis is too specific (does not entail all the positive examples), the constraints prune specialisations of the hypothesis. This loop repeats until either (i) the learner finds a hypothesis that entails all the positive and none of the negative examples, or (ii) there are no more hypotheses to test. We introduce Popper, an ILP system that implements this approach by combining answer set programming and Prolog. Popper supports infinite problem domains, reasoning about lists and numbers, learning textually minimal programs, and learning recursive programs. Our experimental results on three domains (toy game problems, robot strategies, and list transformations) show that (i) constraints drastically improve learning performance, and (ii) Popper can outperform existing ILP systems, both in terms of predictive accuracies and learning times.Comment: Accepted for the machine learning journa

    End-to-End Differentiable Proving

    Get PDF
    We introduce neural networks for end-to-end differentiable proving of queries to knowledge bases by operating on dense vector representations of symbols. These neural networks are constructed recursively by taking inspiration from the backward chaining algorithm as used in Prolog. Specifically, we replace symbolic unification with a differentiable computation on vector representations of symbols using a radial basis function kernel, thereby combining symbolic reasoning with learning subsymbolic vector representations. By using gradient descent, the resulting neural network can be trained to infer facts from a given incomplete knowledge base. It learns to (i) place representations of similar symbols in close proximity in a vector space, (ii) make use of such similarities to prove queries, (iii) induce logical rules, and (iv) use provided and induced logical rules for multi-hop reasoning. We demonstrate that this architecture outperforms ComplEx, a state-of-the-art neural link prediction model, on three out of four benchmark knowledge bases while at the same time inducing interpretable function-free first-order logic rules.Comment: NIPS 2017 camera-ready, NIPS 201

    Efficient Predicate Invention using Shared NeMuS

    Get PDF
    Amao is a cognitive agent framework that tacklesthe invention of predicates with a different strat-egy as compared to recent advances in InductiveLogic Programming (ILP) approaches like Meta-Intepretive Learning (MIL) technique. It uses aNeural Multi-Space (NeMuS) graph structure toanti-unify atoms from the Herbrand base, whichpasses in the inductive momentum check. Induc-tive Clause Learning (ICL), as it is called, is ex-tended here by using the weights of logical compo-nents, already present in NeMuS, to support induc-tive learning by expanding clause candidates withanti-unified atoms. An efficient invention mecha-nism is achieved, including the learning of recur-sive hypotheses, while restricting the shape of thehypothesis by adding bias definitions or idiosyn-crasies of the language

    Learning Logic Programs by Discovering Higher-Order Abstractions

    Full text link
    Discovering novel abstractions is important for human-level AI. We introduce an approach to discover higher-order abstractions, such as map, filter, and fold. We focus on inductive logic programming, which induces logic programs from examples and background knowledge. We introduce the higher-order refactoring problem, where the goal is to compress a logic program by introducing higher-order abstractions. We implement our approach in STEVIE, which formulates the higher-order refactoring problem as a constraint optimisation problem. Our experimental results on multiple domains, including program synthesis and visual reasoning, show that, compared to no refactoring, STEVIE can improve predictive accuracies by 27% and reduce learning times by 47%. We also show that STEVIE can discover abstractions that transfer to different domain
    corecore