12 research outputs found

    Automated Search for Resource-Efficient Branched Multi-Task Networks

    Full text link
    The multi-modal nature of many vision problems calls for neural network architectures that can perform multiple tasks concurrently. Typically, such architectures have been handcrafted in the literature. However, given the size and complexity of the problem, this manual architecture exploration likely exceeds human design abilities. In this paper, we propose a principled approach, rooted in differentiable neural architecture search, to automatically define branching (tree-like) structures in the encoding stage of a multi-task neural network. To allow flexibility within resource-constrained environments, we introduce a proxyless, resource-aware loss that dynamically controls the model size. Evaluations across a variety of dense prediction tasks show that our approach consistently finds high-performing branching structures within limited resource budgets.Comment: British Machine Vision Conference (BMVC) 202

    Prompt Guided Transformer for Multi-Task Dense Prediction

    Full text link
    Task-conditional architecture offers advantage in parameter efficiency but falls short in performance compared to state-of-the-art multi-decoder methods. How to trade off performance and model parameters is an important and difficult problem. In this paper, we introduce a simple and lightweight task-conditional model called Prompt Guided Transformer (PGT) to optimize this challenge. Our approach designs a Prompt-conditioned Transformer block, which incorporates task-specific prompts in the self-attention mechanism to achieve global dependency modeling and parameter-efficient feature adaptation across multiple tasks. This block is integrated into both the shared encoder and decoder, enhancing the capture of intra- and inter-task features. Moreover, we design a lightweight decoder to further reduce parameter usage, which accounts for only 2.7% of the total model parameters. Extensive experiments on two multi-task dense prediction benchmarks, PASCAL-Context and NYUD-v2, demonstrate that our approach achieves state-of-the-art results among task-conditional methods while using fewer parameters, and maintains a significant balance between performance and parameter size.Comment: 10 page

    Decomposition Ascribed Synergistic Learning for Unified Image Restoration

    Full text link
    Learning to restore multiple image degradations within a single model is quite beneficial for real-world applications. Nevertheless, existing works typically concentrate on regarding each degradation independently, while their relationship has been less exploited to ensure the synergistic learning. To this end, we revisit the diverse degradations through the lens of singular value decomposition, with the observation that the decomposed singular vectors and singular values naturally undertake the different types of degradation information, dividing various restoration tasks into two groups,\ie, singular vector dominated and singular value dominated. The above analysis renders a more unified perspective to ascribe the diverse degradations, compared to previous task-level independent learning. The dedicated optimization of degraded singular vectors and singular values inherently utilizes the potential relationship among diverse restoration tasks, attributing to the Decomposition Ascribed Synergistic Learning (DASL). Specifically, DASL comprises two effective operators, namely, Singular VEctor Operator (SVEO) and Singular VAlue Operator (SVAO), to favor the decomposed optimization, which can be lightly integrated into existing convolutional image restoration backbone. Moreover, the congruous decomposition loss has been devised for auxiliary. Extensive experiments on blended five image restoration tasks demonstrate the effectiveness of our method, including image deraining, image dehazing, image denoising, image deblurring, and low-light image enhancement.Comment: 13 page

    Learning to Relate Depth and Semantics for Unsupervised Domain Adaptation

    Full text link
    We present an approach for encoding visual task relationships to improve model performance in an Unsupervised Domain Adaptation (UDA) setting. Semantic segmentation and monocular depth estimation are shown to be complementary tasks; in a multi-task learning setting, a proper encoding of their relationships can further improve performance on both tasks. Motivated by this observation, we propose a novel Cross-Task Relation Layer (CTRL), which encodes task dependencies between the semantic and depth predictions. To capture the cross-task relationships, we propose a neural network architecture that contains task-specific and cross-task refinement heads. Furthermore, we propose an Iterative Self-Learning (ISL) training scheme, which exploits semantic pseudo-labels to provide extra supervision on the target domain. We experimentally observe improvements in both tasks' performance because the complementary information present in these tasks is better captured. Specifically, we show that: (1) our approach improves performance on all tasks when they are complementary and mutually dependent; (2) the CTRL helps to improve both semantic segmentation and depth estimation tasks performance in the challenging UDA setting; (3) the proposed ISL training scheme further improves the semantic segmentation performance. The implementation is available at https://github.com/susaha/ctrl-uda.Comment: Accepted at CVPR 2021; updated results according to the released source cod

    Domain Expansion via Network Adaptation for Solving Inverse Problems

    Full text link
    Deep learning-based methods deliver state-of-the-art performance for solving inverse problems that arise in computational imaging. These methods can be broadly divided into two groups: (1) learn a network to map measurements to the signal estimate, which is known to be fragile; (2) learn a prior for the signal to use in an optimization-based recovery. Despite the impressive results from the latter approach, many of these methods also lack robustness to shifts in data distribution, measurements, and noise levels. Such domain shifts result in a performance gap and in some cases introduce undesired artifacts in the estimated signal. In this paper, we explore the qualitative and quantitative effects of various domain shifts and propose a flexible and parameter efficient framework that adapt pretrained networks to such shifts. We demonstrate the effectiveness of our method for a number of natural image, MRI, and CT reconstructions tasks under domain, measurement model, and noise-level shifts. Our experiments demonstrate that our method provides significantly better performance and parameter efficiency compared to existing domain adaptation techniques

    A Survey on Continual Semantic Segmentation: Theory, Challenge, Method and Application

    Full text link
    Continual learning, also known as incremental learning or life-long learning, stands at the forefront of deep learning and AI systems. It breaks through the obstacle of one-way training on close sets and enables continuous adaptive learning on open-set conditions. In the recent decade, continual learning has been explored and applied in multiple fields especially in computer vision covering classification, detection and segmentation tasks. Continual semantic segmentation (CSS), of which the dense prediction peculiarity makes it a challenging, intricate and burgeoning task. In this paper, we present a review of CSS, committing to building a comprehensive survey on problem formulations, primary challenges, universal datasets, neoteric theories and multifarious applications. Concretely, we begin by elucidating the problem definitions and primary challenges. Based on an in-depth investigation of relevant approaches, we sort out and categorize current CSS models into two main branches including \textit{data-replay} and \textit{data-free} sets. In each branch, the corresponding approaches are similarity-based clustered and thoroughly analyzed, following qualitative comparison and quantitative reproductions on relevant datasets. Besides, we also introduce four CSS specialities with diverse application scenarios and development tendencies. Furthermore, we develop a benchmark for CSS encompassing representative references, evaluation results and reproductions, which is available at~\url{https://github.com/YBIO/SurveyCSS}. We hope this survey can serve as a reference-worthy and stimulating contribution to the advancement of the life-long learning field, while also providing valuable perspectives for related fields.Comment: 20 pages, 12 figures. Undergoing Revie

    Visionary Ophthalmics: Confluence of Computer Vision and Deep Learning for Ophthalmology

    Get PDF
    Ophthalmology is a medical field ripe with opportunities for meaningful application of computer vision algorithms. The field utilizes data from multiple disparate imaging techniques, ranging from conventional cameras to tomography, comprising a diverse set of computer vision challenges. Computer vision has a rich history of techniques that can adequately meet many of these challenges. However, the field has undergone something of a revolution in recent times as deep learning techniques have sprung into the forefront following advances in GPU hardware. This development raises important questions regarding how to best leverage insights from both modern deep learning approaches and more classical computer vision approaches for a given problem. In this dissertation, we tackle challenging computer vision problems in ophthalmology using methods all across this spectrum. Perhaps our most significant work is a highly successful iris registration algorithm for use in laser eye surgery. This algorithm relies on matching features extracted from the structure tensor and a Gabor wavelet – a classically driven approach that does not utilize modern machine learning. However, drawing on insight from the deep learning revolution, we demonstrate successful application of backpropagation to optimize the registration significantly faster than the alternative of relying on finite differences. Towards the other end of the spectrum, we also present a novel framework for improving RANSAC segmentation algorithms by utilizing a convolutional neural network (CNN) trained on a RANSAC-based loss function. Finally, we apply state-of-the-art deep learning methods to solve the problem of pathological fluid detection in optical coherence tomography images of the human retina, using a novel retina-specific data augmentation technique to greatly expand the data set. Altogether, our work demonstrates benefits of applying a holistic view of computer vision, which leverages deep learning and associated insights without neglecting techniques and insights from the previous era

    Efficient Continual Learning:Approaches and Measures

    Get PDF
    corecore