244 research outputs found

    MECHANICAL TESTING OF FUSED FILAMENT 3-D PRINTED COMPONENTS FOR DISTRIBUTED MANUFACTURING

    Get PDF
    Fused filament fabrication (FFF)-based open-source 3-D printers offer the potential of decentralized manufacturing both in developing and developed countries. Unfortunately, a severe lack of data and standards relating to material properties and printed components limit this potential. This thesis first investigates the mechanical properties of a wide-range of FFF materials and provides a database of mechanical strength of the materials tested. The results demonstrate that the tensile strength of a 3-D printed specimen depends largely on the mass of the specimen, which provides a means to estimate the strength of 3-D printed components. Then this information is used to evaluate a bicycled pedal, which was 3-D printed and tested following the CEN (European Committee for Standardization) standards for racing bicycles. The results show the pedals meet the CEN standards and can be used on bicycles at lower costs than standard pedals. This investigation indicates the viability of distributed manufacturing

    Integrated voltage—current monitoring and control of gas metal arc weld magnetic ball-jointed open source 3-D printer

    Get PDF
    To provide process optimization of metal fabricating self-replicating rapid prototyper (RepRap) 3-D printers requires a low-cost sensor and data logger system to measure current (I) and voltage (V) of the gas metal arc welders (GMAW). This paper builds on previous open-source hardware development to provide a real-time measurement of welder I-V where the measuring circuit is connected to two analog inputs of the Arduino that is used to control the 3-D printer itself. Franklin firmware accessed through a web interface that is used to control the printer allows storing the measured values and downloading those stored readings to the user’s computer. To test this custom current and voltage monitoring device this study reports on its use on an upgraded all metal RepRap during the printing of aluminum alloy (ER1100, ER4043, ER4943, ER4047, and ER5356). The voltage and current data were analyzed on a per alloy basis and also layer-by-layer in order to evaluate the device’s efficacy as a monitoring device for 3-D printing and the results of the integrated design are discussed

    Free and Open Source 3-D Model Customizer for Websites to Democratize Design with OpenSCAD

    Get PDF
    International audience3-D printing has entered the consumer market because of recent radical price declines. Consumers can save substantial money by offsetting purchases with DIY pre-designed 3-D printed products. However, even more value can be obtained with distributed manufacturing using mass customization. Unfortunately, the average consumer is not technically sophisticated enough to easily design their own products. One solution to this is the use of an overlay on OpenSCAD parametric code, although current solutions force users to relinquish all rights to their own designs. There is thus a substantial need in the open source design community for a libre 3-D model customizer, which can be used in any design repository to democratize design. This study reports on the design, function, and validation of such software: the Free Open Source 3-D Customizer. It is demonstrated with a case study of the customization of 3-D printable external breast prosthetics. The results showed that novice users can adjust the available parameters according to their needs and save these to a new file on a website. This PHP (recursive acronym for PHP: Hypertext Preprocessor) library is free and open source and has potential for increasing the usefulness of online repositories to enable distributed manufacturing using consumer customized 3-D printable products

    INVESTIGATION OF THE USE OF 3-D PRINTER PLATFORM AS BUILDING BLOCK FOR RAPID DESIGN OF RESEARCH AND MANUFACTURING TOOL

    Get PDF
    This thesis attempts to show how an open source 3-D printer platform, the self replicating rapid prototype (RepRap), could be used to accelerate the development of research and manufacturing tools. Two projects are shown as examples, both utilizing components of the 3-D printer platform. The first project is to develop an instrument capable of performing automated large-area four-point probe measurements. A modified RepRap 3-D Printer with a four-point probe in place of the 3-D printer head is utilized as a precision positioning platform. The printer together with custom designed measurement circuit and software performs automated measurement on multiple points on the sample. Three-part experiments were performed to validate the system performance and it was found to be comparable to existing commercial equipment. The developed system is fully open sourced and cost 70% less than manual proprietary systems. The second project tried to build large size fused filament fabrication (FFF) 3-D printers (2 x 1 x 0.6 meters) by retrofitting an existing CNC machine frame with FFF print head and single board computer running open source 3-D printer controller software. A variety of 3-D object was printed to showcase the printer capability to print simple and complex objects. The result of both projects is comparable to existing commercial equipment and showed how researchers, engineers and makers could use existing open source 3-D printer platform to accelerate the development of research and manufacturing tools

    Development of a resilient 3-D printer for humanitarian crisis response

    Get PDF
    Rapid manufacturing using 3-D printing is a potential solution to some of the most pressing issues for humanitarian logistics. In this paper, findings are reported from a study that involved development of a new type of 3-D printer. In particular, a novel 3-D printer that is designed specifically for reliable rapid manufacturing at the sites of humanitarian crises. First, required capabilities are developed with design elements of a humanitarian 3-D printer, which include, (1) fused filament fabrication, (2) open source self-replicating rapid prototyper design, (3) modular, (4) separate frame, (5) protected electronics, (6) on-board computing, (7) flexible power supply, and (8) climate control mechanisms. The technology is then disclosed with an open source license for the Kijenzi 3-D Printer. A swarm of five Kijenzi 3-D printers are evaluated for rapid part manufacturing for two months at health facilities and other community locations in both rural and urban areas throughout Kisumu County, Kenya. They were successful for their ability to function independently of infrastructure, transportability, ease of use, ability to withstand harsh environments and costs. The results are presented and conclusions are drawn about future work necessary for the Kijenzi 3-D Printer to meet the needs of rapid manufacturing in a humanitarian context

    The Cambrian Explosion of Popular 3D Printing

    Get PDF
    The unexpected appearance of 3D printing has caught many of technology analyst by surprise. In this paper we aim to provide a social context to the feedback loops that have generated this rapid evolution of technologies and skills involved in 3D printing, as well as and online communities related with 3D printing and the impact of this evolution on media an popular imaginary… and our near future
    • …
    corecore