1,989 research outputs found

    An efficient multi-core implementation of a novel HSS-structured multifrontal solver using randomized sampling

    Full text link
    We present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination, and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factorization leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite. The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK -- STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices

    Using a multifrontal sparse solver in a high performance, finite element code

    Get PDF
    We consider the performance of the finite element method on a vector supercomputer. The computationally intensive parts of the finite element method are typically the individual element forms and the solution of the global stiffness matrix both of which are vectorized in high performance codes. To further increase throughput, new algorithms are needed. We compare a multifrontal sparse solver to a traditional skyline solver in a finite element code on a vector supercomputer. The multifrontal solver uses the Multiple-Minimum Degree reordering heuristic to reduce the number of operations required to factor a sparse matrix and full matrix computational kernels (e.g., BLAS3) to enhance vector performance. The net result in an order-of-magnitude reduction in run time for a finite element application on one processor of a Cray X-MP

    Adapting the interior point method for the solution of linear programs on high performance computers

    Get PDF
    In this paper we describe a unified algorithmic framework for the interior point method (IPM) of solving Linear Programs (LPs) which allows us to adapt it over a range of high performance computer architectures. We set out the reasons as to why IPM makes better use of high performance computer architecture than the sparse simplex method. In the inner iteration of the IPM a search direction is computed using Newton or higher order methods. Computationally this involves solving a sparse symmetric positive definite (SSPD) system of equations. The choice of direct and indirect methods for the solution of this system and the design of data structures to take advantage of coarse grain parallel and massively parallel computer architectures are considered in detail. Finally, we present experimental results of solving NETLIB test problems on examples of these architectures and put forward arguments as to why integration of the system within sparse simplex is beneficial

    Highly parallel sparse Cholesky factorization

    Get PDF
    Several fine grained parallel algorithms were developed and compared to compute the Cholesky factorization of a sparse matrix. The experimental implementations are on the Connection Machine, a distributed memory SIMD machine whose programming model conceptually supplies one processor per data element. In contrast to special purpose algorithms in which the matrix structure conforms to the connection structure of the machine, the focus is on matrices with arbitrary sparsity structure. The most promising algorithm is one whose inner loop performs several dense factorizations simultaneously on a 2-D grid of processors. Virtually any massively parallel dense factorization algorithm can be used as the key subroutine. The sparse code attains execution rates comparable to those of the dense subroutine. Although at present architectural limitations prevent the dense factorization from realizing its potential efficiency, it is concluded that a regular data parallel architecture can be used efficiently to solve arbitrarily structured sparse problems. A performance model is also presented and it is used to analyze the algorithms

    Computational linear algebra over finite fields

    Get PDF
    We present here algorithms for efficient computation of linear algebra problems over finite fields

    Adapting the interior point method for the solution of LPs on serial, coarse grain parallel and massively parallel computers

    Get PDF
    In this paper we describe a unified scheme for implementing an interior point algorithm (IPM) over a range of computer architectures. In the inner iteration of the IPM a search direction is computed using Newton's method. Computationally this involves solving a sparse symmetric positive definite (SSPD) system of equations. The choice of direct and indirect methods for the solution of this system, and the design of data structures to take advantage of serial, coarse grain parallel and massively parallel computer architectures, are considered in detail. We put forward arguments as to why integration of the system within a sparse simplex solver is important and outline how the system is designed to achieve this integration
    • …
    corecore