184 research outputs found

    A Column Generation Approach to the Capacitated Vehicle Routing Problem with Stochastic Demands

    Get PDF
    In this article we introduce a new exact solution approach to the Capacitated Vehicle Routing Problem with Stochastic Demands (CVRPSD). In particular, we consider the case where all customer demands are distributed independently and where each customer’s demand follows a Poisson distribution. The CVRPSD can be formulated as a Set Partitioning Problem. We show that, under the above assumptions on demands, the associated column generation subproblem can be solved using a dynamic programming scheme which is similar to that used in the case of deterministic demands. To evaluate the potential of our approach we have embedded this column generation scheme in a branch-and-price algorithm. Computational experiments on a large set of test instances show promising resultsRouting; Stochastic programming; Logistics; Branch and Bound; Dynamic programming

    Dynamic Stochastic Electric Vehicle Routing with Safe Reinforcement Learning

    Get PDF
    Dynamic routing of electric commercial vehicles can be a challenging problem since besides the uncertainty of energy consumption there are also random customer requests. This paper introduces the Dynamic Stochastic Electric Vehicle Routing Problem (DS-EVRP). A Safe Reinforcement Learning method is proposed for solving the problem. The objective is to minimize expected energy consumption in a safe way, which means also minimizing the risk of battery depletion while en route by planning charging whenever necessary. The key idea is to learn offline about the stochastic customer requests and energy consumption using Monte Carlo simulations, to be able to plan the route predictively and safely online. The method is evaluated using simulations based on energy consumption data from a realistic traffic model for the city of Luxembourg and a high-fidelity vehicle model. The results indicate that it is possible to save energy at the same time maintaining reliability by planning the routes and charging in an anticipative way. The proposed method has the potential to improve transport operations with electric commercial vehicles capitalizing on their environmental benefit

    ASAP: The After Salesman Problem

    Get PDF
    The customer contacts taking place after a sales transaction and the services involved are of increasing importance in contemporary business models. The responsiveness to service requests is a key dimension in service quality and therefore an important succes factor in this business domain. This responsiveness is of course highly dependent on the operational scheduling or dispatching decisions made in the often dynamic service settings. We consider the problem of optimizing responsiveness to service requests arriving in real time. We consider three models and formulations and present computational results on exact solution methods. The research is based on practical practical work done with the largest service organization in The Netherlands.operations research and management science;

    The stochastic vehicle routing problem : a literature review, part II : solution methods

    Get PDF
    Building on the work of Gendreau et al. (Oper Res 44(3):469–477, 1996), and complementing the first part of this survey, we review the solution methods used for the past 20 years in the scientific literature on stochastic vehicle routing problems (SVRP). We describe the methods and indicate how they are used when dealing with stochastic vehicle routing problems. Keywords: vehicle routing (VRP), stochastic programmingm, SVRPpublishedVersio

    Supply vessel routing and scheduling under uncertain demand

    Get PDF
    We solve a supply vessel planning problem arising in upstream offshore petroleum logistics. A fleet of supply vessels delivers all the necessary equipment and materials to a set of offshore installations from an onshore supply base, according to a delivery schedule or sailing plan. Supply vessels, being the major cost contributor, are chartered on a long-term basis. The planning of supply vessels implies resolving the trade-off between the cost of the delivery schedule and the reliability of deliveries on the scheduled voyages, i.e. the service level. The execution of a sailing plan is affected by stochastic demands at the installations since a high demand fluctuation quite often leads to insufficient vessel capacity to perform a voyage according to the sailing plan. In addition, the average demand level at the installations may change over time, while the number of vessels in the sailing plan remains the same. Maintaining a reliable flow of supplies under stochastic demand therefore leads to additional costs and reduced service level. We present a novel methodology for reliable supply vessel planning and scheduling, enabling planners to construct delivery schedules having a low expected total cost. The methodology involves the construction of delivery schedules with different reliability levels using an adaptive large neighborhood search metaheuristic algorithm combined with a discrete event simulation procedure for the computation of the expected solution cost. Keywords: maritime logistics, supply vessel planning, recourse, reliable vessel schedules, metaheuristic, simulationpublishedVersio

    Reinforcement Learning for Solving Stochastic Vehicle Routing Problem

    Full text link
    This study addresses a gap in the utilization of Reinforcement Learning (RL) and Machine Learning (ML) techniques in solving the Stochastic Vehicle Routing Problem (SVRP) that involves the challenging task of optimizing vehicle routes under uncertain conditions. We propose a novel end-to-end framework that comprehensively addresses the key sources of stochasticity in SVRP and utilizes an RL agent with a simple yet effective architecture and a tailored training method. Through comparative analysis, our proposed model demonstrates superior performance compared to a widely adopted state-of-the-art metaheuristic, achieving a significant 3.43% reduction in travel costs. Furthermore, the model exhibits robustness across diverse SVRP settings, highlighting its adaptability and ability to learn optimal routing strategies in varying environments. The publicly available implementation of our framework serves as a valuable resource for future research endeavors aimed at advancing RL-based solutions for SVRP.Comment: 14 pages, accepted to ACML2

    The stochastic vehicle routing problem : a literature review, part I : models

    Get PDF
    Building on the work of Gendreau et al. (Eur J Oper Res 88(1):3–12; 1996), we review the past 20 years of scientific literature on stochastic vehicle routing problems. The numerous variants of the problem that have been studied in the literature are described and categorized. Keywords: vehicle routing (VRP), stochastic programming, SVRPpublishedVersio

    Dynamic vehicle routing problems: Three decades and counting

    Get PDF
    Since the late 70s, much research activity has taken place on the class of dynamic vehicle routing problems (DVRP), with the time period after year 2000 witnessing a real explosion in related papers. Our paper sheds more light into work in this area over more than 3 decades by developing a taxonomy of DVRP papers according to 11 criteria. These are (1) type of problem, (2) logistical context, (3) transportation mode, (4) objective function, (5) fleet size, (6) time constraints, (7) vehicle capacity constraints, (8) the ability to reject customers, (9) the nature of the dynamic element, (10) the nature of the stochasticity (if any), and (11) the solution method. We comment on technological vis-à-vis methodological advances for this class of problems and suggest directions for further research. The latter include alternative objective functions, vehicle speed as decision variable, more explicit linkages of methodology to technological advances and analysis of worst case or average case performance of heuristics.© 2015 Wiley Periodicals, Inc
    corecore