10 research outputs found

    Feature and Decision Level Fusion Using Multiple Kernel Learning and Fuzzy Integrals

    Get PDF
    The work collected in this dissertation addresses the problem of data fusion. In other words, this is the problem of making decisions (also known as the problem of classification in the machine learning and statistics communities) when data from multiple sources are available, or when decisions/confidence levels from a panel of decision-makers are accessible. This problem has become increasingly important in recent years, especially with the ever-increasing popularity of autonomous systems outfitted with suites of sensors and the dawn of the ``age of big data.\u27\u27 While data fusion is a very broad topic, the work in this dissertation considers two very specific techniques: feature-level fusion and decision-level fusion. In general, the fusion methods proposed throughout this dissertation rely on kernel methods and fuzzy integrals. Both are very powerful tools, however, they also come with challenges, some of which are summarized below. I address these challenges in this dissertation. Kernel methods for classification is a well-studied area in which data are implicitly mapped from a lower-dimensional space to a higher-dimensional space to improve classification accuracy. However, for most kernel methods, one must still choose a kernel to use for the problem. Since there is, in general, no way of knowing which kernel is the best, multiple kernel learning (MKL) is a technique used to learn the aggregation of a set of valid kernels into a single (ideally) superior kernel. The aggregation can be done using weighted sums of the pre-computed kernels, but determining the summation weights is not a trivial task. Furthermore, MKL does not work well with large datasets because of limited storage space and prediction speed. These challenges are tackled by the introduction of many new algorithms in the following chapters. I also address MKL\u27s storage and speed drawbacks, allowing MKL-based techniques to be applied to big data efficiently. Some algorithms in this work are based on the Choquet fuzzy integral, a powerful nonlinear aggregation operator parameterized by the fuzzy measure (FM). These decision-level fusion algorithms learn a fuzzy measure by minimizing a sum of squared error (SSE) criterion based on a set of training data. The flexibility of the Choquet integral comes with a cost, however---given a set of N decision makers, the size of the FM the algorithm must learn is 2N. This means that the training data must be diverse enough to include 2N independent observations, though this is rarely encountered in practice. I address this in the following chapters via many different regularization functions, a popular technique in machine learning and statistics used to prevent overfitting and increase model generalization. Finally, it is worth noting that the aggregation behavior of the Choquet integral is not intuitive. I tackle this by proposing a quantitative visualization strategy allowing the FM and Choquet integral behavior to be shown simultaneously

    Distributionally Robust Optimization: A Review

    Full text link
    The concepts of risk-aversion, chance-constrained optimization, and robust optimization have developed significantly over the last decade. Statistical learning community has also witnessed a rapid theoretical and applied growth by relying on these concepts. A modeling framework, called distributionally robust optimization (DRO), has recently received significant attention in both the operations research and statistical learning communities. This paper surveys main concepts and contributions to DRO, and its relationships with robust optimization, risk-aversion, chance-constrained optimization, and function regularization

    Uncertainty Management and Evidential Reasoning with Structured Knowledge

    Get PDF
    This research addresses two intensive computational problems of reasoning under uncertainty in artificial intelligence. The first problem is to study the strategy for belief propagation over networks. The second problem is to explore properties of operations which construe the behaviour of those factors in the networks. In the study of operations for computing belief combination over a network model, the computational characteristics of operations are modelled by a set of axioms which are in conformity with human inductive and deductive reasoning. According to different topological connection of networks, we investigate four types of operations. These operations successfully present desirable results in the face of dependent, less informative, and conflicting evidences. As the connections in networks are complex, there exists a number of possible ways for belief propagation. An efficient graph decomposition technique has been used which converts the complicated networks into simply connected ones. This strategy integrates the logic and probabilistic aspects inference, and by using the four types of operations for its computation it gains the advantage of better description of results (interval-valued representation) and less information needed. The performance of this proposed techniques can be seen in the example for assessing civil engineering structure damage and results are in tune with intuition of practicing civil engineers

    Bayesian perspectives on statistical modelling

    Get PDF
    This thesis explores the representation of probability measures in a coherent Bayesian modelling framework, together with the ensuing characterisation properties of posterior functionals. First, a decision theoretic approach is adopted to provide a unified modelling criterion applicable to assessing prior-likelihood combinations, design matrices, model dimensionality and choice of sample size. The utility structure and associated Bayes risk induces a distance measure, introducing concepts from differential geometry to aid in the interpretation of modelling characteristics. Secondly, analytical and approximate computations for the implementation of the Bayesian paradigm, based on the properties of the class of transformation models, are discussed. Finally, relationships between distance measures (in the form of either a derivative of a Bayes mapping or an induced distance) are explored, with particular reference to the construction of sensitivity measures

    Bayesian perspectives on statistical modelling

    Get PDF
    This thesis explores the representation of probability measures in a coherent Bayesian modelling framework, together with the ensuing characterisation properties of posterior functionals. First, a decision theoretic approach is adopted to provide a unified modelling criterion applicable to assessing prior-likelihood combinations, design matrices, model dimensionality and choice of sample size. The utility structure and associated Bayes risk induces a distance measure, introducing concepts from differential geometry to aid in the interpretation of modelling characteristics. Secondly, analytical and approximate computations for the implementation of the Bayesian paradigm, based on the properties of the class of transformation models, are discussed. Finally, relationships between distance measures (in the form of either a derivative of a Bayes mapping or an induced distance) are explored, with particular reference to the construction of sensitivity measures

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems

    Full Issue

    Get PDF
    corecore