541 research outputs found

    Renyi Differential Privacy

    Full text link
    We propose a natural relaxation of differential privacy based on the Renyi divergence. Closely related notions have appeared in several recent papers that analyzed composition of differentially private mechanisms. We argue that the useful analytical tool can be used as a privacy definition, compactly and accurately representing guarantees on the tails of the privacy loss. We demonstrate that the new definition shares many important properties with the standard definition of differential privacy, while additionally allowing tighter analysis of composite heterogeneous mechanisms

    Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds

    Get PDF
    "Concentrated differential privacy" was recently introduced by Dwork and Rothblum as a relaxation of differential privacy, which permits sharper analyses of many privacy-preserving computations. We present an alternative formulation of the concept of concentrated differential privacy in terms of the Renyi divergence between the distributions obtained by running an algorithm on neighboring inputs. With this reformulation in hand, we prove sharper quantitative results, establish lower bounds, and raise a few new questions. We also unify this approach with approximate differential privacy by giving an appropriate definition of "approximate concentrated differential privacy.

    Hypothesis Testing Interpretations and Renyi Differential Privacy

    Full text link
    Differential privacy is a de facto standard in data privacy, with applications in the public and private sectors. A way to explain differential privacy, which is particularly appealing to statistician and social scientists is by means of its statistical hypothesis testing interpretation. Informally, one cannot effectively test whether a specific individual has contributed her data by observing the output of a private mechanism---any test cannot have both high significance and high power. In this paper, we identify some conditions under which a privacy definition given in terms of a statistical divergence satisfies a similar interpretation. These conditions are useful to analyze the distinguishability power of divergences and we use them to study the hypothesis testing interpretation of some relaxations of differential privacy based on Renyi divergence. This analysis also results in an improved conversion rule between these definitions and differential privacy

    Revealing Network Structure, Confidentially: Improved Rates for Node-Private Graphon Estimation

    Full text link
    Motivated by growing concerns over ensuring privacy on social networks, we develop new algorithms and impossibility results for fitting complex statistical models to network data subject to rigorous privacy guarantees. We consider the so-called node-differentially private algorithms, which compute information about a graph or network while provably revealing almost no information about the presence or absence of a particular node in the graph. We provide new algorithms for node-differentially private estimation for a popular and expressive family of network models: stochastic block models and their generalization, graphons. Our algorithms improve on prior work, reducing their error quadratically and matching, in many regimes, the optimal nonprivate algorithm. We also show that for the simplest random graph models (G(n,p)G(n,p) and G(n,m)G(n,m)), node-private algorithms can be qualitatively more accurate than for more complex models---converging at a rate of 1ϵ2n3\frac{1}{\epsilon^2 n^{3}} instead of 1ϵ2n2\frac{1}{\epsilon^2 n^2}. This result uses a new extension lemma for differentially private algorithms that we hope will be broadly useful

    Truncated Laplace and Gaussian mechanisms of RDP

    Full text link
    The Laplace mechanism and the Gaussian mechanism are primary mechanisms in differential privacy, widely applicable to many scenarios involving numerical data. However, due to the infinite-range random variables they generate, the Laplace and Gaussian mechanisms may return values that are semantically impossible, such as negative numbers. To address this issue, we have designed the truncated Laplace mechanism and Gaussian mechanism. For a given truncation interval [a, b], the truncated Gaussian mechanism ensures the same Renyi Differential Privacy (RDP) as the untruncated mechanism, regardless of the values chosen for the truncation interval [a, b]. Similarly, the truncated Laplace mechanism, for specified interval [a, b], maintains the same RDP as the untruncated mechanism. We provide the RDP expressions for each of them. We believe that our study can further enhance the utility of differential privacy in specific applications
    • …
    corecore