183,578 research outputs found

    Non-perturbative Renormalization of Bilinear Operators with Improved Staggered Quarks

    Full text link
    We present renormalization factors for the bilinear operators obtained using the non-perturbative renormalization method (NPR) in the RI-MOM scheme with improved staggered fermions on the MILC asqtad lattices (Nf=2+1N_f = 2+1). We use the MILC coarse ensembles with 203×6420^3 \times 64 geometry and amℓ/ams=0.01/0.05am_{\ell}/am_s = 0.01/0.05. We obtain the wave function renormalization factor ZqZ_q from the conserved vector current and the mass renormalization factor ZmZ_m from the scalar bilinear operator. We also present preliminary results of renormalization factors for other bilinear operators.Comment: 7 pages, 4 figures, Lattice 2013 Proceedin

    The renormalization of charge and temporality in quantum electrodynamics

    Get PDF
    In this article it is intended a closer look at the renormalization procedure used in quantum electrodynamics to cope with the divergent integrals that appear in higher-order calculations within the theory. The main focus will be the charge renormalization that reveals, in a clearer way than the mass renormalization, structural limitations present in quantum electrodynamics that are even more aggravating than the ones usually pointed at when considering the renormalization procedure. In this way we see that the possibility of charge renormalization is due to limitations of the theory in the temporal description of the interactions

    Renormalization of the Sigma-Omega model within the framework of U(1) gauge symmetry

    Full text link
    It is shown that the Sigma-Omega model which is widely used in the study of nuclear relativistic many-body problem can exactly be treated as an Abelian massive gauge field theory. The quantization of this theory can perfectly be performed by means of the general methods described in the quantum gauge field theory. Especially, the local U(1) gauge symmetry of the theory leads to a series of Ward-Takahashi identities satisfied by Green's functions and proper vertices. These identities form an uniquely correct basis for the renormalization of the theory. The renormalization is carried out in the mass-dependent momentum space subtraction scheme and by the renormalization group approach. With the aid of the renormalization boundary conditions, the solutions to the renormalization group equations are given in definite expressions without any ambiguity and renormalized S-matrix elememts are exactly formulated in forms as given in a series of tree diagrams provided that the physical parameters are replaced by the running ones. As an illustration of the renormalization procedure, the one-loop renormalization is concretely carried out and the results are given in rigorous forms which are suitable in the whole energy region. The effect of the one-loop renormalization is examined by the two-nucleon elastic scattering.Comment: 32 pages, 17 figure

    A Generic Renormalization Method in Curved Spaces and at Finite Temperature

    Full text link
    Based only on simple principles of renormalization in coordinate space, we derive closed renormalized amplitudes and renormalization group constants at 1- and 2-loop orders for scalar field theories in general backgrounds. This is achieved through a generic renormalization procedure we develop exploiting the central idea behind differential renormalization, which needs as only inputs the propagator and the appropriate laplacian for the backgrounds in question. We work out this generic coordinate space renormalization in some detail, and subsequently back it up with specific calculations for scalar theories both on curved backgrounds, manifestly preserving diffeomorphism invariance, and at finite temperature.Comment: 15pp., REVTeX, UB-ECM-PF 94/1
    • …
    corecore