8 research outputs found

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Probabilistic and Distributed Control of a Large-Scale Swarm of Autonomous Agents

    Get PDF
    We present a novel method for guiding a large-scale swarm of autonomous agents into a desired formation shape in a distributed and scalable manner. Our Probabilistic Swarm Guidance using Inhomogeneous Markov Chains (PSG-IMC) algorithm adopts an Eulerian framework, where the physical space is partitioned into bins and the swarm's density distribution over each bin is controlled. Each agent determines its bin transition probabilities using a time-inhomogeneous Markov chain. These time-varying Markov matrices are constructed by each agent in real-time using the feedback from the current swarm distribution, which is estimated in a distributed manner. The PSG-IMC algorithm minimizes the expected cost of the transitions per time instant, required to achieve and maintain the desired formation shape, even when agents are added to or removed from the swarm. The algorithm scales well with a large number of agents and complex formation shapes, and can also be adapted for area exploration applications. We demonstrate the effectiveness of this proposed swarm guidance algorithm by using results of numerical simulations and hardware experiments with multiple quadrotors.Comment: Submitted to IEEE Transactions on Robotic

    Space-Time Continuous Models of Swarm Robotic Systems: Supporting Global-to-Local Programming

    Get PDF
    A generic model in as far as possible mathematical closed-form was developed that predicts the behavior of large self-organizing robot groups (robot swarms) based on their control algorithm. In addition, an extensive subsumption of the relatively young and distinctive interdisciplinary research field of swarm robotics is emphasized. The connection to many related fields is highlighted and the concepts and methods borrowed from these fields are described shortly

    Characterisation of a nuclear cave environment utilising an autonomous swarm of heterogeneous robots

    Get PDF
    As nuclear facilities come to the end of their operational lifetime, safe decommissioning becomes a more prevalent issue. In many such facilities there exist ‘nuclear caves’. These caves constitute areas that may have been entered infrequently, or even not at all, since the construction of the facility. Due to this, the topography and nature of the contents of these nuclear caves may be unknown in a number of critical aspects, such as the location of dangerous substances or significant physical blockages to movement around the cave. In order to aid safe decommissioning, autonomous robotic systems capable of characterising nuclear cave environments are desired. The research put forward in this thesis seeks to answer the question: is it possible to utilise a heterogeneous swarm of autonomous robots for the remote characterisation of a nuclear cave environment? This is achieved through examination of the three key components comprising a heterogeneous swarm: sensing, locomotion and control. It will be shown that a heterogeneous swarm is not only capable of performing this task, it is preferable to a homogeneous swarm. This is due to the increased sensory and locomotive capabilities, coupled with more efficient explorational prowess when compared to a homogeneous swarm

    Swarm robotic systems: ypod formation with analysis on scalability and stability

    Get PDF
    Aquesta tesi se central en la formació d’eixams, on s’estudia el comportament coordinat d’un grup de robots per formar un patró quan s’observa a nivell global. En aquest sentit, la formació de la forma general és un dels problemes actuals en d’intel·ligència d’eixams artificials. En aquesta tesi s’introdueix una nova formació en forma de Y, la qual presenta una gran quantitat d’aplicacions en comparació amb altres tècniques de formació. Per exemple, la formació en Y es pot aplicar com a formació estratègica per totes les escales, presenta facilitat per canviar de forma i grandària a més de resoldre els problemes de redundància, d’autoorganització i autoreparació. L’objectiu principal d’aquesta tesi és aconseguir la formació en Y d’un eixam de robots. La implementació de dita formació únicament s’ha dut a terme mitjançant un entorn de simulació tot i que se han tingut en compte diferents aspectes que es podrien donar en una implementació real. El disseny del control de l’eixam per a diferents eixos s’ha realitzat a partir d’un model capaç de predir el comportament global de l’eixam, de la definició del temps d’establiment i l’aplicació de tècniques de localització de pols. Per controlar l’eixam en forma Y en termes d’orientació i el seu moviment com un bloc, s’han combinat el controlador lineal proposat, amb funcions límit i l’ajust d’alguns paràmetres per simulació. Els paràmetres s’han escollit per la formació desitjada i segons les constants definides per l’usuari. En comparació amb altres treballs, la solució proposta és simple, computacionalment eficient i tant per models d’eixams centralitzats com descentralitzats.Esta tesis se centra en la formación de enjambres, donde se estudia el comportamiento coordinado de un grupo de robots para formar un patrón cuando se observa a nivel global. En este sentido, la formación de la forma general es uno de los problemas actuales en la inteligencia de enjambres artificiales. En esta tesis se introduce una nueva formación en forma de Y, la cual presenta una gran cantidad de aplicaciones en comparación con otras técnicas de formación. Por ejemplo, la formación en Y se puede aplicar como formación estratégica para todas las escalas, presenta facilidad para cambiar de forma y tamaño además de resolver los problemas de redundancia, de auto-organización y auto-reparación. El objetivo principal de esta tesis es conseguir la formación en Y de un enjambre de robots. La implementación de dicha formación se ha llevado a cabo únicamente mediante un entorno de simulación aunque se han tenido en cuenta diferentes aspectos que se podrían dar en una implementación real. El diseño del control del enjambre para diferentes ejes se ha realizado a partir de un modelo capaz de predecir el comportamiento global del enjambre, de la definición del tiempo de establecimiento y la aplicación de técnicas de localización de polos. Para controlar el enjambre en forma de Y en términos de orientación y movimientos del enjambre como un bloque, se han combinado el controlador lineal propuesto, funciones límite y el ajuste de algunos parámetros por simulación. Los parámetros se han escogido para la formación deseada y según las constantes definidas por el usuario. En comparación con otros trabajos, la solución propuesta es simple, computacionalmente eficiente, y tanto para modelos de enjambres centralizados como descentralizados.The context of this work is the innovative young filed of swarm robotics. Particularly, in this thesis focused on swarm formation, which is important in swarm robotics too since coordinated behaviour of a group of robots to form a pattern when viewed globally. In this regard, global shape formation is one of the ongoing problems in artificial swarm intelligence. In nature, it is performed for various purposes, and search and rescue swarms could be used in disaster areas .In robotics phenomena, there exist various shape formations in the literature, but in this thesis, introduced new shape formation Y-Pod, which has vast applications compare to other formation techniques. In the discussion of our research journey, me and my supervisor discussed about various shape formations but finally exploit new shape formation Y-Pod and when we think about it, arise some questions ,why Y-Pod swarm formation and what it will serve, so in our casual discussion some important advantages are identified, those are : The Y-Pod can be utilized for formation strategy on all scales, Global shape formation, when viewed globally, Changes shapes, Easy to expand, overcome the redundancy problems and Self-organized and self-repair problems. The main objective of the proposed approach is to form a Y-pod formation of swarm robots. As well as we keep in our mind for real robot performance task, but the original work is delivered in simulation based environment only. Several parameters that significantly define the resulting behavior. We have proposed system equilibrium parameters with settling time and pole based problems, to control the swarm system in various axis an accurate model will predict the global behavior of the Y-Pod swarm formation based on the mathematical identified parameters. The proposed linear controller, limiting functions and simulation tuned parameters are combined to control Y-Pod swarm formation in terms of orientation, and swarm movement as a whole. Parameters are chosen based on desired formation as well as user defined constraints. This approach compared to others, is simple, computationally efficient, scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Rendezvous Trajectory Generation for Energy Trophallaxis

    No full text

    Rendezvous trajectory generation for energy trophallaxis

    No full text
    corecore