97 research outputs found

    Advanced avionics concepts: Autonomous spacecraft control

    Get PDF
    A large increase in space operations activities is expected because of Space Station Freedom (SSF) and long range Lunar base missions and Mars exploration. Space operations will also increase as a result of space commercialization (especially the increase in satellite networks). It is anticipated that the level of satellite servicing operations will grow tenfold from the current level within the next 20 years. This growth can be sustained only if the cost effectiveness of space operations is improved. Cost effectiveness is operational efficiency with proper effectiveness. A concept is presented of advanced avionics, autonomous spacecraft control, that will enable the desired growth, as well as maintain the cost effectiveness (operational efficiency) in satellite servicing operations. The concept of advanced avionics that allows autonomous spacecraft control is described along with a brief description of each component. Some of the benefits of autonomous operations are also described. A technology utilization breakdown is provided in terms of applications

    An Educational Platform for Small Satellite Development with Proximity Operation Capabilities

    Get PDF
    An alternative to ground testing of small satellites is presented here, where the kinematics of a 3U underactuated CubeSat operating in 3 degrees-of-freedom (DOF) is reproduced by an omnidirectional wheeled platform, while satellite dynamics are simulated in real-time. The system is equipped with a relative navigation sensor in the form factor of a smartphone, the Smartphone Video Guidance Sensor (SVGS), allowing the platform to reproduce proximity operation maneuvers. The wheeled platform is used as an educational tool for students over a large range of academic levels, from high school to graduate school. A derivation of the kinematic relationship from satellite dynamics to rotacaster wheel velocities is presented, along with the guidance and control laws of the system. Simulation and experimental results demonstrate that the wheeled platform was able to successfully replicate detumble, slew, and attitude hold maneuvers of a 3U CubeSat

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Design and Experimental Evaluation of a Hybrid Wheeled-Leg Exploration Rover in the Context of Multi-Robot Systems

    Get PDF
    With this dissertation, the electromechanic design, implementation, locomotion control, and experimental evaluation of a novel type of hybrid wheeled-leg exploration rover are presented. The actively articulated suspension system of the rover is the basis for advanced locomotive capabilities of a mobile exploration robot. The developed locomotion control system abstracts the complex kinematics of the suspension system and provides platform control inputs usable by autonomous behaviors or human remote control. Design and control of the suspension system as well as experimentation with the resulting rover are in the focus of this thesis. The rover is part of a heterogeneous modular multi-robot exploration system with an aspired sample return mission to the lunar south pole or currently hard-to-access regions on Mars. The multi-robot system pursues a modular and reconfigurable design methodology. It combines heterogeneous robots with different locomotion capabilities for enhanced overall performance. Consequently, the design of the multi-robot system is presented as the frame of the rover developments. The requirements for the rover design originating from the deployment in a modular multi-robot system are accentuated and summarized in this thesis

    Design of a walking robot

    Get PDF
    Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project

    Proprioceptive Localization for Robots

    Get PDF
    Localization is a critical navigation function for mobile robots. Most localization methods employ a global position system (GPS), a lidar, and a camera which are exteroceptive sensors relying on the perception and recognition of landmarks in the environment. However, GPS signals may be unavailable because high-rise buildings may block GPS signals in urban areas. Poor weather and lighting conditions may challenge all exteroceptive sensors. In this dissertation, we focus on proprioceptive localization (PL) methods which refer to a new class of robot egocentric localization methods that do not rely on the perception and recognition of external landmarks. These methods depend on a prior map and proprioceptive sensors such as inertial measurement units (IMUs) and/or wheel encoders which are naturally immune to aforementioned adversary environmental conditions that may hinder exteroceptive sensors. PL is intended to be a low-cost and fallback solution when everything else fails. We first propose a method named proprioceptive localization assisted by magnetoreception (PLAM). PLAM employs a gyroscope and a compass to sense heading changes and matches the heading sequence with a pre-processed heading graph to localize the robot. Not all cases can be successful because degenerated maps may consist of rectangular grid-like streets and the robot may travel in a loop. To analyze these, we use information entropy to model map characteristics and perform both simulation and experiments to find out typical heading and information entropy requirements for localization. We further propose a method which allows continuous localization and is less limited by map degeneracy. Assisted by magnetoreception, we use IMUs and wheel encoders to estimate vehicle trajectory which is used to query a prior known map to obtain location. We named the proposed method as graph-based proprioceptive localization (GBPL). As a robot travels, we extract a sequence of heading-length values for straight segments from the trajectory and match the sequence with a pre-processed heading-length graph (HLG) abstracted from the prior known map to localize the robot under a graph-matching approach. Using HLG information, our location alignment and verification module compensates for trajectory drift, wheel slip, or tire inflation level. %The algorithm runs successfully in finding robot location continuously and achieves localization accuracy at the level that the prior map allows (less than 10m). With the development of communication technology, it becomes possible to leverage vehicle-to-vehicle (V2V) communication to develop a multiple vehicle/robot collaborative localization scheme. Named as collaborative graph-based proprioceptive localization (C-GBPL), we extract heading-length sequence from the trajectory as features. When rendezvousing with other vehicles, the ego vehicle aggregates the features from others and forms a merged query graph. We match the query graph with the HLG to localize the vehicle under a graph-to-graph matching approach. The C-GBPL algorithm significantly outperforms its single-vehicle counterpart in localization speed and robustness to trajectory and map degeneracy. Besides, we propose a PL method with WiFi in the indoor environment targeted at handling inconsistent access points (APs). We develop a windowed majority voting and statistical hypothesis testing-based approach to remove APs with large displacements between reference and query data sets. We refine the localization by applying maximum likelihood estimation method to the closed-form posterior location distribution over the filtered signal strength and AP sets in the time window. Our method achieves a mean localization error of less than 3.7 meters even when 70% of APs are inconsistent

    Formation-Based Odour Source Localisation Using Distributed Terrestrial and Marine Robotic Systems

    Get PDF
    This thesis tackles the problem of robotic odour source localisation, that is, the use of robots to find the source of a chemical release. As the odour travels away from the source, in the form of a plume carried by the wind or current, small scale turbulence causes it to separate into intermittent patches, suppressing any gradients and making this a particularly challenging search problem. We focus on distributed strategies for odour plume tracing in the air and in the water and look primarily at 2D scenarios, although novel results are also presented for 3D tracing. The common thread to our work is the use of multiple robots in formation, each outfitted with odour and flow sensing devices. By having more than one robot, we can gather observations at different locations, thus helping overcome the difficulties posed by the patchiness of the odour concentration. The flow (wind or current) direction is used to orient the formation and move the robots up-flow, while the measured concentrations are used to centre the robots in the plume and scale the formation to trace its limits. We propose two formation keeping methods. For terrestrial and surface robots equipped with relative or absolute positioning capabilities, we employ a graph-based formation controller using the well-known principle of Laplacian feedback. For underwater vehicles lacking such capabilities, we introduce an original controller for a leader-follower triangular formation using acoustic modems with ranging capabilities. The methods we propose underwent extensive experimental evaluation in high-fidelity simulations and real-world trials. The marine formation controller was implemented in MEDUSA autonomous vehicles and found to maintain a stable formation despite the multi-second ranging period. The airborne plume tracing algorithm was tested using compact Khepera robots in a wind tunnel, yielding low distance overheads and reduced tracing error. A combined approach for marine plume tracing was evaluated in simulation with promising results

    Formation-Based Odour Source Localisation Using Distributed Terrestrial and Marine Robotic Systems

    Get PDF
    This thesis tackles the problem of robotic odour source localisation, that is, the use of robots to find the source of a chemical release. As the odour travels away from the source, in the form of a plume carried by the wind or current, small scale turbulence causes it to separate into intermittent patches, suppressing any gradients and making this a particularly challenging search problem. We focus on distributed strategies for odour plume tracing in the air and in the water and look primarily at 2D scenarios, although novel results are also presented for 3D tracing. The common thread to our work is the use of multiple robots in formation, each outfitted with odour and flow sensing devices. By having more than one robot, we can gather observations at different locations, thus helping overcome the difficulties posed by the patchiness of the odour concentration. The flow (wind or current) direction is used to orient the formation and move the robots up-flow, while the measured concentrations are used to centre the robots in the plume and scale the formation to trace its limits. We propose two formation keeping methods. For terrestrial and surface robots equipped with relative or absolute positioning capabilities, we employ a graph-based formation controller using the well-known principle of Laplacian feedback. For underwater vehicles lacking such capabilities, we introduce an original controller for a leader-follower triangular formation using acoustic modems with ranging capabilities. The methods we propose underwent extensive experimental evaluation in high-fidelity simulations and real-world trials. The marine formation controller was implemented in MEDUSA autonomous vehicles and found to maintain a stable formation despite the multi-second ranging period. The airborne plume tracing algorithm was tested using compact Khepera robots in a wind tunnel, yielding low distance overheads and reduced tracing error. A combined approach for marine plume tracing was evaluated in simulation with promising results

    Workshop on Science and the Human Exploration of Mars

    Get PDF
    The exploration of Mars will be a multi-decadal activity. Currently, a scientific program is underway, sponsored by NASA's Office of Space Science in the United States, in collaboration with international partners France, Italy, and the European Space Agency. Plans exist for the continuation of this robotic program through the first automated return of Martian samples in 2014. Mars is also a prime long-term objective for human exploration, and within NASA, efforts are being made to provide the best integration of the robotic program and future human exploration missions. From the perspective of human exploration missions, it is important to understand the scientific objectives of human missions, in order to design the appropriate systems, tools, and operational capabilities to maximize science on those missions. In addition, data from the robotic missions can provide critical environmental data - surface morphology, materials composition, evaluations of potential toxicity of surface materials, radiation, electrical and other physical properties of the Martian environment, and assessments of the probability that humans would encounter Martian life forms. Understanding of the data needs can lead to the definition of experiments that can be done in the near-term that will make the design of human missions more effective. This workshop was convened to begin a dialog between the scientific community that is central to the robotic exploration mission program and a set of experts in systems and technologies that are critical to human exploration missions. The charge to the workshop was to develop an understanding of the types of scientific exploration that would be best suited to the human exploration missions and the capabilities and limitations of human explorers in undertaking science on those missions
    corecore