1,329 research outputs found

    Stereoscopic Sketchpad: 3D Digital Ink

    Get PDF
    --Context-- This project looked at the development of a stereoscopic 3D environment in which a user is able to draw freely in all three dimensions. The main focus was on the storage and manipulation of the ‘digital ink’ with which the user draws. For a drawing and sketching package to be effective it must not only have an easy to use user interface, it must be able to handle all input data quickly and efficiently so that the user is able to focus fully on their drawing. --Background-- When it comes to sketching in three dimensions the majority of applications currently available rely on vector based drawing methods. This is primarily because the applications are designed to take a users two dimensional input and transform this into a three dimensional model. Having the sketch represented as vectors makes it simpler for the program to act upon its geometry and thus convert it to a model. There are a number of methods to achieve this aim including Gesture Based Modelling, Reconstruction and Blobby Inflation. Other vector based applications focus on the creation of curves allowing the user to draw within or on existing 3D models. They also allow the user to create wire frame type models. These stroke based applications bring the user closer to traditional sketching rather than the more structured modelling methods detailed. While at present the field is inundated with vector based applications mainly focused upon sketch-based modelling there are significantly less voxel based applications. The majority of these applications focus on the deformation and sculpting of voxmaps, almost the opposite of drawing and sketching, and the creation of three dimensional voxmaps from standard two dimensional pixmaps. How to actually sketch freely within a scene represented by a voxmap has rarely been explored. This comes as a surprise when so many of the standard 2D drawing programs in use today are pixel based. --Method-- As part of this project a simple three dimensional drawing program was designed and implemented using C and C++. This tool is known as Sketch3D and was created using a Model View Controller (MVC) architecture. Due to the modular nature of Sketch3Ds system architecture it is possible to plug a range of different data structures into the program to represent the ink in a variety of ways. A series of data structures have been implemented and were tested for efficiency. These structures were a simple list, a 3D array, and an octree. They have been tested for: the time it takes to insert or remove points from the structure; how easy it is to manipulate points once they are stored; and also how the number of points stored effects the draw and rendering times. One of the key issues brought up by this project was devising a means by which a user is able to draw in three dimensions while using only two dimensional input devices. The method settled upon and implemented involves using the mouse or a digital pen to sketch as one would in a standard 2D drawing package but also linking the up and down keyboard keys to the current depth. This allows the user to move in and out of the scene as they draw. A couple of user interface tools were also developed to assist the user. A 3D cursor was implemented and also a toggle, which when on, highlights all of the points intersecting the depth plane on which the cursor currently resides. These tools allow the user to see exactly where they are drawing in relation to previously drawn lines. --Results-- The tests conducted on the data structures clearly revealed that the octree was the most effective data structure. While not the most efficient in every area, it manages to avoid the major pitfalls of the other structures. The list was extremely quick to render and draw to the screen but suffered severely when it comes to finding and manipulating points already stored. In contrast the three dimensional array was able to erase or manipulate points effectively while the draw time rendered the structure effectively useless, taking huge amounts of time to draw each frame. The focus of this research was on how a 3D sketching package would go about storing and accessing the digital ink. This is just a basis for further research in this area and many issues touched upon in this paper will require a more in depth analysis. The primary area of this future research would be the creation of an effective user interface and the introduction of regular sketching package features such as the saving and loading of images

    Non-photorealistic volume rendering using stippling techniques

    Get PDF
    Journal ArticleSimulating hand-drawn illustration techniques can succinctly express information in a manner that is communicative and informative. We present a framework for an interactive direct volume illustration system that simulates traditional stipple drawing. By combining the principles of artistic and scientific illustration, we explore several feature enhancement techniques to create effective, interactive visualizations of scientific and medical datasets. We also introduce a rendering mechanism that generates appropriate point lists at all resolutions during an automatic preprocess, and modifies rendering styles through different combinations of these feature enhancements. The new system is an effective way to interactively preview large, complex volume datasets in a concise, meaningful, and illustrative manner. Volume stippling is effective for many applications and provides a quick and efficient method to investigate volume models

    Illustrative interactive stipple rendering

    Get PDF
    Journal ArticleAbstract-Simulating hand-drawn illustration can succinctly express information in a manner that is communicative and informative. We present a framework for an interactive direct stipple rendering of volume and surface-based objects. By combining the principles of artistic and scientific illustration, we explore several feature enhancement techniques to create effective, interactive visualizations of scientific and medical data sets. We also introduce a rendering mechanism that generates appropriate point lists at all resolutions during an automatic preprocess and modifies rendering styles through different combinations of these feature enhancements. The new system is an effective way to interactively preview large, complex volume and surface data sets in a concise, meaningful, and illustrative manner. Stippling is effective for many applications and provides a quick and efficient method to investigate both volume and surface models

    A Method for the Perceptual Optimization of Complex Visualizations

    Get PDF
    A common problem in visualization applications is the display of one surface overlying another. Unfortunately, it is extremely difficult to do this clearly and effectively. Stereoscopic viewing can help, but in order for us to be able to see both surfaces simultaneously, they must be textured, and the top surface must be made partially transparent. There is also abundant evidence that all textures are not equal in helping to reveal surface shape, but there are no general guidelines describing the best set of textures to be used in this way. What makes the problem difficult to perceptually optimize is that there are a great many variables involved. Both foreground and background textures must be specified in terms of their component colors, texture element shapes, distributions, and sizes. Also to be specified is the degree of transparency for the foreground texture components. Here we report on a novel approach to creating perceptually optimal solutions to complex visualization problems and we apply it to the overlapping surface problem as a test case. Our approach is a three-stage process. In the first stage we create a parameterized method for specifying a foreground and background pair of textures. In the second stage a genetic algorithm is applied to a population of texture pairs using subject judgments as a selection criterion. Over many trials effective texture pairs evolve. The third stage involves characterizing and generalizing the examples of effective textures. We detail this process and present some early results

    A survey on personal computer applications in industrial design process

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Industrial Design, Izmir, 1999Includes bibliographical references (leaves: 157-162)Text in English, Abstract: Turkish and Englishxii, 194 leavesIn this thesis, computer aided design systems are studied from the industrial designer's point of view. The study includes industrial design processes, computer aided design systems and the integration aspects.The technical issues are priorly studied, including current hardware and software technologies. The pure technical concepts are tried to be supported with real-world examples and graphics. Several important design software are examined, whether by personal practice or by literature research, depending on the availability of the software.Finally, the thesis include a case study, a 17" LCD computer monitor designed with a set of graphic programs including two-dimensional and three-dimensional packages.Keywords: Computers, industrial design methods, design software, computer aided design

    Fine tone control in hardware hatching

    Get PDF
    • …
    corecore