2,699 research outputs found

    Perfusion computed tomography of the liver

    Get PDF
    Background: Perfusion CT (P-CT) is a relatively new imaging technique that permits the visual and quantitative assessment of the micro- and macrocirculation of a target organ and focal lesions. P-CT has shown promising results in the evaluation of hyper-vascular tumors such as hepatocellular carcinoma (HCC). HCC is the sixth most common cancer globally and it has a poor prognosis when discovered at a late tumor stage. Any improvement in HCC detection would be directly beneficial for patient care. This thesis aims to investigate the strengths and limitations of whole liver P-CT and to evaluate if PCT can improve the detection of hyper-vascular liver lesions in patients with chronic liver disease. Methods: Study I: Twenty-four patients, who underwent dynamic P-CT for detection of HCC were retrospectively divided into three groups: (1) without portal-venous hypertension (PVH) (n = 8), (2) with PVH (n = 8), (3) with PVH and thrombosis (n = 8). Time to peak splenic- and peak renal enhancement (PSE resp. PRE), as well as arterial liver perfusion (ALP), portal- venous liver perfusion (PLP) and hepatic perfusion-index (HPI) of the liver and HCC derived from PSE- versus PRE- based modelling were compared between the groups. Study II: Group A (n=15) and Group B (n= 38) underwent P-CT using 50 ml contrast medium (CM). Group B underwent an additional standard multiphasic liver CT using 120ml (70-143 ml). Triple-arterial CT image sets were reconstructed from P-CT by fusing three dedicated arterial time points. Triple-arterial CT and single-arterial CT were compared by two readers (R1, R2), who assessed subjective image quality (IQ) and HCC detection rate. A third reader assessed objective IQ.Study III: Fifty study participants (Group A) were scanned with P-CT, a high CM volume protocol and bolus-tracking technique to depict ten arterial phases. Time attenuation curves were created for hyper-vascular liver lesions, liver parenchyma and hepatic vascular structures. 16 participants of Group A with lesions were further analyzed and radiation dose-neutral quadruple arterial phase image sets were created (Group A1). Group A1 was then compared to a Control Group (Group B) consisting of 16 consecutive patients undergoing standard single arterial phase scans. Lesion depiction and quantitative IQ were compared. Results: Study I: Time to PSE was significantly delayed in PVH groups 2 and 3 (P = 0.02), whereas PRE was similar in groups 1, 2 and 3 (P > 0.05). In group 1, liver and HCC perfusion parameters were similar for PSE- and PRE-based modelling (all P > 0.05), while significant differences were seen for PLP and HPI (liver only) in group 2 and ALP in group 3 (all P < 0.05). Study II: The mean CTDIvol of triple-arterial CT and single-arterial CT was equivalent (P=0.73). Triple-arterial CT showed lower image noise and better contrast-to-noise-ratio (P<0.001, P=0.032, respectively), but no significant difference in lesion-to-liver-contrast-ratio (P=0.31). Subjective IQ was good for both protocols. The detection rate of the 65 HCC lesions was 82%/83% (R1/R2) at triple-arterial CT and 80%/77% (R1/R2) at single-arterial CT (P=0.4). Study III: Both Group A1 and B had 33 hyper-enhancing liver lesions each. The mean CTDIvol of quadruple-arterial CT and single-arterial CT was equivalent (P=0.16). The mean time to reach peak lesion-to-liver contrast (LLC) was 20.1s (±4.2s) with a range of 12.5s to 29.1s. Quadruple arterial CT performed significantly better than the Control Group in regards to LLC (P= .009), CNR (P= .002), Image Noise (P<0.001) and hepatic artery enhancement(P<0.001). Conclusions: Study I: PSE is significantly delayed in patients with portal venous hypertension, which results in a miscalculation of P-CT parameters. Maximum-slope based P-CT could be improved by replacing the spleen with the kidney as the reference organ. The difference between time to PSE and time to PRE might serve as a non-invasive biomarker of portal venous hypertension. Study II: Radiation dose-equivalent triple arterial phase imaging is feasible and showed superior image quality and similar HCC detection rate as standard single arterial phase CT despite a substantially smaller CM volume. Study III: The optimal scan delay at single arterial phase CT for depiction of hyper-vascular liver lesions occurs at 20 s, when using a high iodine dose CM protocol and bolus-tracking. Fused quadruple arterial phase CT significantly increases lesion depiction, quantitative IQ and hepatic artery enhancement as compared to standard single arterial phase CT, without elevating the total radiation dose

    Noninvasive Evaluation of Microcirculation under Normal and Pathological Conditions Using Contrast-Enhanced Ultrasonography (CEUS)

    Get PDF
    The present chapter highlights the most important information about microcirculation and its evaluation using contrast-enhanced ultrasonography (CEUS). In the beginning it outlines some general considerations about microcirculation, together with its morphological and physiological particularities under normal and pathological circumstances. The ultrasonographic (US) evaluation of vascularity is based on the Doppler technique and the harmonic technique using contrast agents. Then it presents briefly the Doppler ultrasound (DUS) and discusses its most important current and emerging indications. CEUS is presented extensively, covering the fundamentals of sonographic contrast agents, harmonic imaging and quantification techniques. A special focus is placed not only on the current and emerging indications of CEUS but also on the advantages and limitations of the method. This chapter also incorporates information about experimental CEUS applications and future perspectives. CEUS is the recommended US method for the characterization of microcirculation. The results of the examination are displayed in real-time, under the eyes of the examiner, while the quantitative assessment of the contrast agent kinetics parameters is easy to perform. This method allows a precise definition of the healthy or pathologic state of an organ and the follow-up of treatment response

    Diseases of the Abdomen and Pelvis 2018-2021: Diagnostic Imaging - IDKD Book

    Get PDF
    Gastrointestinal disease; PET/CT; Radiology; X-ray; IDKD; Davo

    Ultrasound Imaging

    Get PDF
    This book provides an overview of ultrafast ultrasound imaging, 3D high-quality ultrasonic imaging, correction of phase aberrations in medical ultrasound images, etc. Several interesting medical and clinical applications areas are also discussed in the book, like the use of three dimensional ultrasound imaging in evaluation of Asherman's syndrome, the role of 3D ultrasound in assessment of endometrial receptivity and follicular vascularity to predict the quality oocyte, ultrasound imaging in vascular diseases and the fetal palate, clinical application of ultrasound molecular imaging, Doppler abdominal ultrasound in small animals and so on

    Radiomics and imaging genomics in precision medicine

    Get PDF
    “Radiomics,” a field of study in which high-throughput data is extracted and large amounts of advanced quantitative imaging features are analyzed from medical images, and “imaging genomics,” the field of study of high-throughput methods of associating imaging features with genomic data, has gathered academic interest. However, a radiomics and imaging genomics approach in the oncology world is still in its very early stages and many problems remain to be solved. In this review, we will look through the steps of radiomics and imaging genomics in oncology, specifically addressing potential applications in each organ and focusing on technical issues

    First-order statistical speckle models improve robustness and reproducibility of contrast-enhanced ultrasound perfusion estimates

    Get PDF
    Contrast-enhanced ultrasound (CEUS) permits the quantification and monitoring of adaptive tumor responses in the face of anti-angiogenic treatment, with the goal of informing targeted therapy. However, conventional CEUS image analysis relies on mean signal intensity as an estimate of tracer concentration in indicator-dilution modeling. This discounts additional information that may be available from the first-order speckle statistics in a CEUS image. Heterogeneous vascular networks, typical of tumor-induced angiogenesis, lead to heterogeneous contrast enhancement of the imaged tumor cross-section. To address this, a linear (B-mode) processing approach was developed to quantify the change in the first-order speckle statistics of B-mode cine loops due to the incursion of microbubbles. The technique, named the EDoF (effective degrees of freedom) method, was developed on tumor bearing mice (MDA-MB-231LN mammary fat pad inoculation) and evaluated using nonlinear (two-pulse amplitude modulated) contrast microbubble-specific images. To improve the potential clinical applicability of the technique, a second-generation compound probability density function for the statistics of two-pulse amplitude modulated contrast-enhanced ultrasound images was developed. The compound technique was tested in an antiangiogenic drug trial (bevacizumab) on tumor bearing mice (MDA-MB-231LN), and evaluated with gold-standard histology and contrast-enhanced X-ray computed tomography. The compound statistical model could more accurately discriminate anti-VEGF treated tumors from untreated tumors than conventional CEUS image. The technique was then applied to a rapid patient-derived xenograft (PDX) model of renal cell carcinoma (RCC) in the chorioallantoic membrane (CAM) of chicken embryos. The ultimate goal of the PDX model is to screen RCC patients for de novo sunitinib resistance. The analysis of the first-order speckle statistics of contrast-enhanced ultrasound cine loops provides more robust and reproducible estimates of tumor blood perfusion than conventional image analysis. Theoretically this form of analysis could quantify perfusion heterogeneity and provide estimates of vascular fractal dimension, but further work is required to determine what physiological features influence these measures. Treatment sensitivity matrices, which combine vascular measures from CEUS and power Doppler, may be suitable for screening of de novo sunitinib resistance in patients diagnosed with renal cell carcinoma. Further studies are required to assess whether this protocol can be predictive of patient outcome

    Management of Gastric Cancer

    Get PDF
    Gastric cancer is the fifth most common cancer and the second most common cause of cancer death worldwide. More than 50% of the patients have advanced disease at diagnosis and in this case the disease has a poor outcome. The staging of gastric cancers is based on endoscopic ultrasound, computed tomography, magnetic resonance imaging, positron emission tomography, in addition to the laparoscopic staging. Many improvements in the surgical techniques have been seen in the last decade. Laparoscopic surgery is an emerging approach which offers important advantages: less blood loss, reduced postoperative pain, accelerated recovery, early return to normal bowel function and reduced hospital stay. D1 lymphadenectomy, with a goal of examining 15 or greater lymph nodes is a standard. D2 dissection is considered as a standard in several institutions especially in eastern Asia. Perioperative chemotherapy and adjuvant concurrent radiochemotherapy are recognized as standards treatments. Palliative chemotherapy is the mainstay treatment of advanced stages of the disease (metastatic and non-operable tumors). Despite these treatment advances, the prognosis of gastric cancer remains poor with a 5-year survival ranging from 10 to 15% in all stages combined

    Analysis of contrast-enhanced medical images.

    Get PDF
    Early detection of human organ diseases is of great importance for the accurate diagnosis and institution of appropriate therapies. This can potentially prevent progression to end-stage disease by detecting precursors that evaluate organ functionality. In addition, it also assists the clinicians for therapy evaluation, tracking diseases progression, and surgery operations. Advances in functional and contrast-enhanced (CE) medical images enabled accurate noninvasive evaluation of organ functionality due to their ability to provide superior anatomical and functional information about the tissue-of-interest. The main objective of this dissertation is to develop a computer-aided diagnostic (CAD) system for analyzing complex data from CE magnetic resonance imaging (MRI). The developed CAD system has been tested in three case studies: (i) early detection of acute renal transplant rejection, (ii) evaluation of myocardial perfusion in patients with ischemic heart disease after heart attack; and (iii), early detection of prostate cancer. However, developing a noninvasive CAD system for the analysis of CE medical images is subject to multiple challenges, including, but are not limited to, image noise and inhomogeneity, nonlinear signal intensity changes of the images over the time course of data acquisition, appearances and shape changes (deformations) of the organ-of-interest during data acquisition, determination of the best features (indexes) that describe the perfusion of a contrast agent (CA) into the tissue. To address these challenges, this dissertation focuses on building new mathematical models and learning techniques that facilitate accurate analysis of CAs perfusion in living organs and include: (i) accurate mathematical models for the segmentation of the object-of-interest, which integrate object shape and appearance features in terms of pixel/voxel-wise image intensities and their spatial interactions; (ii) motion correction techniques that combine both global and local models, which exploit geometric features, rather than image intensities to avoid problems associated with nonlinear intensity variations of the CE images; (iii) fusion of multiple features using the genetic algorithm. The proposed techniques have been integrated into CAD systems that have been tested in, but not limited to, three clinical studies. First, a noninvasive CAD system is proposed for the early and accurate diagnosis of acute renal transplant rejection using dynamic contrast-enhanced MRI (DCE-MRI). Acute rejection–the immunological response of the human immune system to a foreign kidney–is the most sever cause of renal dysfunction among other diagnostic possibilities, including acute tubular necrosis and immune drug toxicity. In the U.S., approximately 17,736 renal transplants are performed annually, and given the limited number of donors, transplanted kidney salvage is an important medical concern. Thus far, biopsy remains the gold standard for the assessment of renal transplant dysfunction, but only as the last resort because of its invasive nature, high cost, and potential morbidity rates. The diagnostic results of the proposed CAD system, based on the analysis of 50 independent in-vivo cases were 96% with a 95% confidence interval. These results clearly demonstrate the promise of the proposed image-based diagnostic CAD system as a supplement to the current technologies, such as nuclear imaging and ultrasonography, to determine the type of kidney dysfunction. Second, a comprehensive CAD system is developed for the characterization of myocardial perfusion and clinical status in heart failure and novel myoregeneration therapy using cardiac first-pass MRI (FP-MRI). Heart failure is considered the most important cause of morbidity and mortality in cardiovascular disease, which affects approximately 6 million U.S. patients annually. Ischemic heart disease is considered the most common underlying cause of heart failure. Therefore, the detection of the heart failure in its earliest forms is essential to prevent its relentless progression to premature death. While current medical studies focus on detecting pathological tissue and assessing contractile function of the diseased heart, this dissertation address the key issue of the effects of the myoregeneration therapy on the associated blood nutrient supply. Quantitative and qualitative assessment in a cohort of 24 perfusion data sets demonstrated the ability of the proposed framework to reveal regional perfusion improvements with therapy, and transmural perfusion differences across the myocardial wall; thus, it can aid in follow-up on treatment for patients undergoing the myoregeneration therapy. Finally, an image-based CAD system for early detection of prostate cancer using DCE-MRI is introduced. Prostate cancer is the most frequently diagnosed malignancy among men and remains the second leading cause of cancer-related death in the USA with more than 238,000 new cases and a mortality rate of about 30,000 in 2013. Therefore, early diagnosis of prostate cancer can improve the effectiveness of treatment and increase the patient’s chance of survival. Currently, needle biopsy is the gold standard for the diagnosis of prostate cancer. However, it is an invasive procedure with high costs and potential morbidity rates. Additionally, it has a higher possibility of producing false positive diagnosis due to relatively small needle biopsy samples. Application of the proposed CAD yield promising results in a cohort of 30 patients that would, in the near future, represent a supplement of the current technologies to determine prostate cancer type. The developed techniques have been compared to the state-of-the-art methods and demonstrated higher accuracy as shown in this dissertation. The proposed models (higher-order spatial interaction models, shape models, motion correction models, and perfusion analysis models) can be used in many of today’s CAD applications for early detection of a variety of diseases and medical conditions, and are expected to notably amplify the accuracy of CAD decisions based on the automated analysis of CE images

    MRI Contrast Agents: Developments, Challenges, and Future Trends

    Get PDF
    Contrast agents in medicine are chemical materials used to improve tissue and fluid contrast in the body during medical imaging. It is mainly used in improving the visibility of blood vessels and the gastrointestinal tract. Some types of contrast materials are used in a medical imaging examination and can be classified according to the imaging technique used. The first contract agent dates back to 1988 which is called gadopentetate dimeglumine (Magnevist®) and was allocated for Magnetic Resonance Imaging (MRI). Then, I has become available in clinical use. Afterwards, many studies have examined the capability of MRI contrast agents to be used in diagnostic imaging in all parts of the body including the skin, the central nervous system, heart and circulation, breast, lungs, musculoskeletal and lymphatic systems, and even the gastrointestinal tract. Nowadays, MRI contrast agents are widely used in clinical practice and have expanded beyond the imitational expectations to be a key tool in disease diagnosis around the world. Contrast-Enhanced (CE) MRI keeps in development and new technologies have emerged and new agents were introduced, with great opportunity being provided to ensure better imaging and patient management practices. Also, new clinical challenges were associated with the progress in CE-MRI. This paper aims to overview the historical development of MRI and contrast materials in order to shed light on the clinical development of CE-MRI. Also, the paper overviews the contemporary perspectives and clinical challenges associated with CE-MRI with the provision of significant future trends

    Molecular imaging of abdominal aortic aneurysms

    Get PDF
    Abdominal aortic aneurysm (AAA) disease is characterised by an asymptomatic, permanent, focal dilatation of the abdominal aorta progressing towards rupture, which confers significant mortality. Patient management and surgical decisions currently rely on aortic diameter measurements via abdominal ultrasound screening. However, AAA rupture can occur at small diameters or may never occur at large diameters. Therefore, there is a need to develop molecular imaging-based biomarkers independent of aneurysm diameter that may help stratify patients with early-stage AAA to reduced surveillance. AAA uptake of [18F]fluorodeoxyglucose on positron emission tomography (PET) has been demonstrated previously; however, its glucose-dependent uptake may overlook other key mechanisms. The cell proliferation marker [18F]fluorothymidine ([18F]FLT) is primarily used in tumour imaging. The aim of the overall study for this thesis was to explore the feasibility of [18F]FLT PET / computed tomography (CT) to visualise and quantify AAA in the angiotensin II (AngII)-infused mouse model. The experiments presented in this thesis revealed increased uptake of [18F]FLT in the 14-day AngII AAA model than in saline controls, followed by a decrease in this uptake at 28 days. Moreover, in line with the in vivo PET/CT findings, Western blotting of aortic tissue revealed increased levels of thymidine kinase-1 (the substrate of [18F]FLT) and nucleoside transporters in the 14-day AngII AAA model than in saline controls, followed by decreased expression levels at 28 days. A pilot experiment further demonstrated that [18F]FLT PET/CT could be used to detect an early therapeutic response to oral imatinib treatment in the AngII AAA model. Therefore, [18F]FLT PET/CT may be a feasible modality to detect and quantify cell proliferation in the AngII AAA murine model. The findings of this thesis are encouraging for the application of [18F]FLT PET/CT in patients with small AAA
    • …
    corecore