155 research outputs found

    Removing speech artifacts from electroencephalographic recordings during overt picture naming

    Get PDF
    A number of electroencephalography (EEG) studies have investigated the time course of brain activation during overt word production. The interpretation of their results is complicated by the fact that articulatory movements may mask the cognitive components of interest. The first aim of the present study was to investigate when speech artifacts occur during word production planning and what effects they have on the spatio-temporal neural activation pattern. The second aim was to propose a new method that strongly attenuates speech artifacts during overt picture naming and to compare it with existing methods. EEG and surface electromyograms (EMGs) of the lips were recorded while participants overtly named pictures in a picture-word interference paradigm. The comparison of the raw data with lip EMG and the comparison of source localizations of raw and corrected EEG data showed that speech artifacts occurred mainly from ~. 400. ms post-stimulus onset, but some earlier artifacts mean that they occur much earlier than hitherto assumed. We compared previously used methods of speech artifacts removal (SAR) with a new method, which is based on Independent Component Analysis (SAR-ICA). Our new method clearly outperformed other methods. In contrast to other methods, there was only a weak correlation between the lip EMG and the corrected data by SAR-ICA. Also, only the data corrected with our method showed activation of cerebral sources consistent with meta-analyses of word production

    The Use of Electroencephalography in Language Production Research: A Review

    Get PDF
    Speech production long avoided electrophysiological experiments due to the suspicion that potential artifacts caused by muscle activity of overt speech may lead to a bad signal-to-noise ratio in the measurements. Therefore, researchers have sought to assess speech production by using indirect speech production tasks, such as tacit or implicit naming, delayed naming, or meta-linguistic tasks, such as phoneme-monitoring. Covert speech may, however, involve different processes than overt speech production. Recently, overt speech has been investigated using electroencephalography (EEG). As the number of papers published is rising steadily, this clearly indicates the increasing interest and demand for overt speech research within the field of cognitive neuroscience of language. Our main goal here is to review all currently available results of overt speech production involving EEG measurements, such as picture naming, Stroop naming, and reading aloud. We conclude that overt speech production can be successfully studied using electrophysiological measures, for instance, event-related brain potentials (ERPs). We will discuss possible relevant components in the ERP waveform of speech production and aim to address the issue of how to interpret the results of ERP research using overt speech, and whether the ERP components in language production are comparable to results from other fields

    Response-Locked Brain Dynamics of Word Production

    Get PDF
    International audienceThe cortical regions involved in the different stages of speech production are relatively well-established, but their spatio-temporal dynamics remain poorly understood. In particular, the available studies have characterized neural events with respect to the onset of the stimulus triggering a verbal response. The core aspect of language production, however, is not perception but action. In this context, the most relevant question may not be how long after a stimulus brain events happen, but rather how long before the production act do they occur. We investigated speech production-related brain activity time-locked to vocal onset, in addition to the common stimulus-locked approach. We report the detailed temporal interplay between medial and left frontal activities occurring shortly before vocal onset. We interpret those as reflections of, respectively, word selection and word production processes. This medial-lateral organization is in line with that described in non-linguistic action control, suggesting that similar processes are at play in word production and non-linguistic action production. This novel view of the brain dynamics underlying word production provides a useful background for future investigations of the spatio-temporal brain dynamics that lead to the production of verbal responses. Citation: Riès S, Janssen N, Burle B, Alario F-X (2013) Response-Locked Brain Dynamics of Word Production. PLoS ONE 8(3): e58197

    The Relative Contribution of High-Gamma Linguistic Processing Stages of Word Production, and Motor Imagery of Articulation in Class Separability of Covert Speech Tasks in EEG Data

    Get PDF
    Word production begins with high-Gamma automatic linguistic processing functions followed by speech motor planning and articulation. Phonetic properties are processed in both linguistic and motor stages of word production. Four phonetically dissimilar phonemic structures “BA”, “FO”, “LE”, and “RY” were chosen as covert speech tasks. Ten neurologically healthy volunteers with the age range of 21–33 participated in this experiment. Participants were asked to covertly speak a phonemic structure when they heard an auditory cue. EEG was recorded with 64 electrodes at 2048 samples/s. Initially, one-second trials were used, which contained linguistic and motor imagery activities. The four-class true positive rate was calculated. In the next stage, 312 ms trials were used to exclude covert articulation from analysis. By eliminating the covert articulation stage, the four-class grand average classification accuracy dropped from 96.4% to 94.5%. The most valuable features emerge after Auditory cue recognition (~100 ms post onset), and within the 70–128 Hz frequency range. The most significant identified brain regions were the Prefrontal Cortex (linked to stimulus driven executive control), Wernicke’s area (linked to Phonological code retrieval), the right IFG, and Broca’s area (linked to syllabification). Alpha and Beta band oscillations associated with motor imagery do not contain enough information to fully reflect the complexity of speech movements. Over 90% of the most class-dependent features were in the 30-128 Hz range, even during the covert articulation stage. As a result, compared to linguistic functions, the contribution of motor imagery of articulation in class separability of covert speech tasks from EEG data is negligible

    Exploring the temporal dynamics of speech production with EEG and group ICA

    Get PDF
    Speech production is a complex skill whose neural implementation relies on a large number of different regions in the brain. How neural activity in these different regions varies as a function of time during the production of speech remains poorly understood. Previous MEG studies on this topic have concluded that activity proceeds from posterior to anterior regions of the brain in a sequential manner. Here we tested this claim using the EEG technique. Specifically, participants performed a picture naming task while their naming latencies and scalp potentials were recorded. We performed group temporal Independent Component Analysis (group tICA) to obtain temporally independent component timecourses and their corresponding topographic maps. We identified fifteen components whose estimated neural sources were located in various areas of the brain. The trial-by-trial component timecourses were predictive of the naming latency, implying their involvement in the task. Crucially, we computed the degree of concurrent activity of each component timecourse to test whether activity was sequential or parallel. Our results revealed that these fifteen distinct neural sources exhibit largely concurrent activity during speech production. These results suggest that speech production relies on neural activity that takes place in parallel networks of distributed neural sources

    Early and late effects of semantic distractors on electroencephalographic responses during overt picture naming

    Get PDF
    This study investigated the nature of the interference effect of semantically related distractors in the picture-word interference paradigm, which has been claimed to be caused by either competition between lexical representations of target and distractor or by a late response exclusion mechanism that removes the distractor from a response buffer. EEG was recorded while participants overtly named pictures accompanied by categorically related versus unrelated written distractor words. In contrast to previous studies, stimuli were presented for only 250 ms to avoid any re-processing. ERP effects of relatedness were found around 290, 470, 540, and 660 ms post stimulus onset. In addition, related distractors led to an increase in midfrontal theta power, especially from about 440 to 540 ms, as well as to decreased high beta power between 40 and 110 ms and increased high beta power between 275 and 340 ms post stimulus onset. Response-locked analyses showed no differences in ERPs, however increased low and high beta power for related distractors in various time windows, most importantly a high beta power increase between -175 and -155 ms before speech onset. These results suggest that the semantic distractor effect is a combination of various effects and that the lexical competition account and the response exclusion account each capture a part, but not all aspects of the effect

    General-Purpose Monitoring during Speech Production

    No full text
    WOS:000289063000012International audienceThe concept of "monitoring" refers to our ability to control our actions on-line. Monitoring involved in speech production is often described in psycholinguistic models as an inherent part of the language system. We probed the specificity of speech monitoring in two psycholinguistic experiments where electro-encephalographic activities were recorded. Our focus was on a component previously reported in nonlinguistic manual tasks and interpreted as a marker of monitoring processes. The error negativity (Ne, or error-related negativity), thought to originate in medial frontal areas, peaks shortly after erroneous responses. A component of seemingly comparable properties has been reported, after errors, in tasks requiring access to linguistic knowledge (e.g., speech production), compatible with a generic error-detection process. However, in contrast to its original name, advanced processing methods later revealed that this component is also present after correct responses in visuomotor tasks. Here, we reported the observation of the same negativity after correct responses across output modalities (manual and vocal responses). This indicates that, in language production too, the Ne reflects on-line response monitoring rather than error detection specifically. Furthermore, the temporal properties of the Ne suggest that this monitoring mechanism is engaged before any auditory feedback. The convergence of our findings with those obtained with nonlinguistic tasks suggests that at least part of the monitoring involved in speech production is subtended by a general-purpose mechanism

    Early and Late Effects of Semantic Distractors on Electroencephalographic Responses During Overt Picture Naming

    Get PDF
    This study investigated the nature of the interference effect of semantically related distractors in the picture-word interference paradigm, which has been claimed to be caused by either competition between lexical representations of target and distractor or by a late response exclusion mechanism that removes the distractor from a response buffer. EEG was recorded while participants overtly named pictures accompanied by categorically related versus unrelated written distractor words. In contrast to previous studies, stimuli were presented for only 250 ms to avoid any re-processing. ERP effects of relatedness were found around 290, 470, 540, and 660 ms post stimulus onset. In addition, related distractors led to an increase in midfrontal theta power, especially from about 440 to 540 ms, as well as to decreased high beta power between 40 and 110 ms and increased high beta power between 275 and 340 ms post stimulus onset. Response-locked analyses showed no differences in ERPs, however increased low and high beta power for related distractors in various time windows, most importantly a high beta power increase between −175 and −155 ms before speech onset. These results suggest that the semantic distractor effect is a combination of various effects and that the lexical competition account and the response exclusion account each capture a part, but not all aspects of the effect

    Lateralized electrical brain activity reveals covert attention allocation during speaking

    Get PDF
    Acknowledgements We thank Svetlana Gerakaki for providing us with the pictures of objects with a canonical orientation and Sophie Kirkels and Annelies van Wijngaarden for assistance with editing the pictures.Peer reviewedPostprin
    corecore