7 research outputs found

    데이터 집약적 응용의 효율적인 시스템 자원 활용을 위한 메모리 서브시스템 최적화

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2020. 8. 염헌영.With explosive data growth, data-intensive applications, such as relational database and key-value storage, have been increasingly popular in a variety of domains in recent years. To meet the growing performance demands of data-intensive applications, it is crucial to efficiently and fully utilize memory resources for the best possible performance. However, general-purpose operating systems (OSs) are designed to provide system resources to applications running on a system in a fair manner at system-level. A single application may find it difficult to fully exploit the systems best performance due to this system-level fairness. For performance reasons, many data-intensive applications implement their own mechanisms that OSs already provide, under the assumption that they know better about the data than OSs. They can be greedily optimized for performance but this may result in inefficient use of system resources. In this dissertation, we claim that simple OS support with minor application modifications can yield even higher application performance without sacrificing system-level resource utilization. We optimize and extend OS memory subsystem for better supporting applications while addressing three memory-related issues in data-intensive applications. First, we introduce a memory-efficient cooperative caching approach between application and kernel buffer to address double caching problem where the same data resides in multiple layers. Second, we present a memory-efficient, transparent zero-copy read I/O scheme to avoid the performance interference problem caused by memory copy behavior during I/O. Third, we propose a memory-efficient fork-based checkpointing mechanism for in-memory database systems to mitigate the memory footprint problem of the existing fork-based checkpointing scheme; memory usage increases incrementally (up to 2x) during checkpointing for update-intensive workloads. To show the effectiveness of our approach, we implement and evaluate our schemes on real multi-core systems. The experimental results demonstrate that our cooperative approach can more effectively address the above issues related to data-intensive applications than existing non-cooperative approaches while delivering better performance (in terms of transaction processing speed, I/O throughput, or memory footprint).최근 폭발적인 데이터 성장과 더불어 데이터베이스, 키-밸류 스토리지 등의 데이터 집약적인 응용들이 다양한 도메인에서 인기를 얻고 있다. 데이터 집약적인 응용의 높은 성능 요구를 충족하기 위해서는 주어진 메모리 자원을 효율적이고 완벽하게 활용하는 것이 중요하다. 그러나, 범용 운영체제(OS)는 시스템에서 수행 중인 모든 응용들에 대해 시스템 차원에서 공평하게 자원을 제공하는 것을 우선하도록 설계되어있다. 즉, 시스템 차원의 공평성 유지를 위한 운영체제 지원의 한계로 인해 단일 응용은 시스템의 최고 성능을 완전히 활용하기 어렵다. 이러한 이유로, 많은 데이터 집약적 응용은 운영체제에서 제공하는 기능에 의지하지 않고 비슷한 기능을 응용 레벨에 구현하곤 한다. 이러한 접근 방법은 탐욕적인 최적화가 가능하다는 점에서 성능 상 이득이 있을 수 있지만, 시스템 자원의 비효율적인 사용을 초래할 수 있다. 본 논문에서는 운영체제의 지원과 약간의 응용 수정만으로도 비효율적인 시스템 자원 사용 없이 보다 높은 응용 성능을 보일 수 있음을 증명하고자 한다. 그러기 위해 운영체제의 메모리 서브시스템을 최적화 및 확장하여 데이터 집약적인 응용에서 발생하는 세 가지 메모리 관련 문제를 해결하였다. 첫째, 동일한 데이터가 여러 계층에 존재하는 중복 캐싱 문제를 해결하기 위해 응용과 커널 버퍼 간에 메모리 효율적인 협력 캐싱 방식을 제시하였다. 둘째, 입출력시 발생하는 메모리 복사로 인한 성능 간섭 문제를 피하기 위해 메모리 효율적인 무복사 읽기 입출력 방식을 제시하였다. 셋째, 인-메모리 데이터베이스 시스템을 위한 메모리 효율적인 fork 기반 체크포인트 기법을 제안하여 기존 포크 기반 체크포인트 기법에서 발생하는 메모리 사용량 증가 문제를 완화하였다; 기존 방식은 업데이트 집약적 워크로드에 대해 체크포인팅을 수행하는 동안 메모리 사용량이 최대 2배까지 점진적으로 증가할 수 있었다. 본 논문에서는 제안한 방법들의 효과를 증명하기 위해 실제 멀티 코어 시스템에 구현하고 그 성능을 평가하였다. 실험결과를 통해 제안한 협력적 접근방식이 기존의 비협력적 접근방식보다 데이터 집약적 응용에게 효율적인 메모리 자원 활용을 가능하게 함으로써 더 높은 성능을 제공할 수 있음을 확인할 수 있었다.Chapter 1 Introduction 1 1.1 Motivation 1 1.1.1 Importance of Memory Resources 1 1.1.2 Problems 2 1.2 Contributions 5 1.3 Outline 6 Chapter 2 Background 7 2.1 Linux Kernel Memory Management 7 2.1.1 Page Cache 7 2.1.2 Page Reclamation 8 2.1.3 Page Table and TLB Shootdown 9 2.1.4 Copy-on-Write 10 2.2 Linux Support for Applications 11 2.2.1 fork 11 2.2.2 madvise 11 2.2.3 Direct I/O 12 2.2.4 mmap 13 Chapter 3 Memory Efficient Cooperative Caching 14 3.1 Motivation 14 3.1.1 Problems of Existing Datastore Architecture 14 3.1.2 Proposed Architecture 17 3.2 Related Work 17 3.3 Design and Implementation 19 3.3.1 Overview 19 3.3.2 Kernel Support 24 3.3.3 Migration to DBIO 25 3.4 Evaluation 27 3.4.1 System Configuration 27 3.4.2 Methodology 28 3.4.3 TPC-C Benchmarks 30 3.4.4 YCSB Benchmarks 32 3.5 Summary 37 Chapter 4 Memory Efficient Zero-copy I/O 38 4.1 Motivation 38 4.1.1 The Problems of Copy-Based I/O 38 4.2 Related Work 40 4.2.1 Zero Copy I/O 40 4.2.2 TLB Shootdown 42 4.2.3 Copy-on-Write 43 4.3 Design and Implementation 44 4.3.1 Prerequisites for z-READ 44 4.3.2 Overview of z-READ 45 4.3.3 TLB Shootdown Optimization 48 4.3.4 Copy-on-Write Optimization 52 4.3.5 Implementation 55 4.4 Evaluation 55 4.4.1 System Configurations 56 4.4.2 Effectiveness of the TLB Shootdown Optimization 57 4.4.3 Effectiveness of CoW Optimization 59 4.4.4 Analysis of the Performance Improvement 62 4.4.5 Performance Interference Intensity 63 4.4.6 Effectiveness of z-READ in Macrobenchmarks 65 4.5 Summary 67 Chapter 5 Memory Efficient Fork-based Checkpointing 69 5.1 Motivation 69 5.1.1 Fork-based Checkpointing 69 5.1.2 Approach 71 5.2 Related Work 73 5.3 Design and Implementation 74 5.3.1 Overview 74 5.3.2 OS Support 78 5.3.3 Implementation 79 5.4 Evaluation 80 5.4.1 Experimental Setup 80 5.4.2 Performance 81 5.5 Summary 86 Chapter 6 Conclusion 87 요약 100Docto

    Virtual files: a Framework for Experimental Design

    Get PDF
    The increasing power and decreasing cost of computers has resulted in them being applied in an ever widening area. In the world of Computer Aided Design it is now practicable to involve the machine in the earlier stages where a design is still speculative, as well as in the later stages where the computer's calculating ability becomes paramount. Research on database systems has not followed this trend, concentrating instead on commercial applications, with the result that there are very few systems targeted at the early stages of the design process. In this thesis we consider the design and implementation of the file manager for such a system, first of all from the point of view of a single designer working on an entire design, and then from the point of view of a team of designers, each working on a separate aspect of a design. We consider the functionality required of the type of system we are proposing, defining the terminology of experiments to describe it. Having ascertained our requirements we survey current database technology in order to determine to what extent it meets our requirements. We consider traditional concurrency control methods and conclude that they are incompatible with our requirements. We consider current data models and conclude that, with the exception of the persistent programming model, they are not appropriate in the context required, while the implementation of the persistent programming model provides transactions on data structures but not experiments. The implementation of experiments is considered. We examine a number of potential methods, deciding on differential files as the one most likely both to meet our requirements and to have the lowest overheads. Measurements conducted on both a preliminary and a full-scale implementation confirm that this is the case. There are, nevertheless, further gains in convenience and performance to be obtained by exploiting the capabilities of the hardware to the full; we discuss these in relation to virtual memory systems, with particular reference to the VAX/VMS environment. Turning to the case where several designers are each working on a (nearly) distinct part of a design, we consider how to detect conflicts between experiments. Basing our approach on optimistic concurrency control methods, we show how read and write sets may be used to determine those areas of the database where conflicts might arise. As an aside, we show how the methods we propose can be used in an alternative approach to optimistic concurrency control, giving a reduction in system overheads for certain applications. We consider implementation techniques, concluding that a differential files approach has significant advantages in maintaining write sets, while a two-level bitmap may be used to maintain read sets efficiently

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Low-cost and efficient fault detection and diagnosis schemes for modern cores

    Get PDF
    Continuous improvements in transistor scaling together with microarchitectural advances have made possible the widespread adoption of high-performance processors across all market segments. However, the growing reliability threats induced by technology scaling and by the complexity of designs are challenging the production of cheap yet robust systems. Soft error trends are haunting, especially for combinational logic, and parity and ECC codes are therefore becoming insufficient as combinational logic turns into the dominant source of soft errors. Furthermore, experts are warning about the need to also address intermittent and permanent faults during processor runtime, as increasing temperatures and device variations will accelerate inherent aging phenomena. These challenges specially threaten the commodity segments, which impose requirements that existing fault tolerance mechanisms cannot offer. Current techniques based on redundant execution were devised in a time when high penalties were assumed for the sake of high reliability levels. Novel light-weight techniques are therefore needed to enable fault protection in the mass market segments. The complexity of designs is making post-silicon validation extremely expensive. Validation costs exceed design costs, and the number of discovered bugs is growing, both during validation and once products hit the market. Fault localization and diagnosis are the biggest bottlenecks, magnified by huge detection latencies, limited internal observability, and costly server farms to generate test outputs. This thesis explores two directions to address some of the critical challenges introduced by unreliable technologies and by the limitations of current validation approaches. We first explore mechanisms for comprehensively detecting multiple sources of failures in modern processors during their lifetime (including transient, intermittent, permanent and also design bugs). Our solutions embrace a paradigm where fault tolerance is built based on exploiting high-level microarchitectural invariants that are reusable across designs, rather than relying on re-execution or ad-hoc block-level protection. To do so, we decompose the basic functionalities of processors into high-level tasks and propose three novel runtime verification solutions that combined enable global error detection: a computation/register dataflow checker, a memory dataflow checker, and a control flow checker. The techniques use the concept of end-to-end signatures and allow designers to adjust the fault coverage to their needs, by trading-off area, power and performance. Our fault injection studies reveal that our methods provide high coverage levels while causing significantly lower performance, power and area costs than existing techniques. Then, this thesis extends the applicability of the proposed error detection schemes to the validation phases. We present a fault localization and diagnosis solution for the memory dataflow by combining our error detection mechanism, a new low-cost logging mechanism and a diagnosis program. Selected internal activity is continuously traced and kept in a memory-resident log whose capacity can be expanded to suite validation needs. The solution can catch undiscovered bugs, reducing the dependence on simulation farms that compute golden outputs. Upon error detection, the diagnosis algorithm analyzes the log to automatically locate the bug, and also to determine its root cause. Our evaluations show that very high localization coverage and diagnosis accuracy can be obtained at very low performance and area costs. The net result is a simplification of current debugging practices, which are extremely manual, time consuming and cumbersome. Altogether, the integrated solutions proposed in this thesis capacitate the industry to deliver more reliable and correct processors as technology evolves into more complex designs and more vulnerable transistors.El continuo escalado de los transistores junto con los avances microarquitectónicos han posibilitado la presencia de potentes procesadores en todos los segmentos de mercado. Sin embargo, varios problemas de fiabilidad están desafiando la producción de sistemas robustos. Las predicciones de "soft errors" son inquietantes, especialmente para la lógica combinacional: soluciones como ECC o paridad se están volviendo insuficientes a medida que dicha lógica se convierte en la fuente predominante de soft errors. Además, los expertos están alertando acerca de la necesidad de detectar otras fuentes de fallos (causantes de errores permanentes e intermitentes) durante el tiempo de vida de los procesadores. Los segmentos "commodity" son los más vulnerables, ya que imponen unos requisitos que las técnicas actuales de fiabilidad no ofrecen. Estas soluciones (generalmente basadas en re-ejecución) fueron ideadas en un tiempo en el que con tal de alcanzar altos nivel de fiabilidad se asumían grandes costes. Son por tanto necesarias nuevas técnicas que permitan la protección contra fallos en los segmentos más populares. La complejidad de los diseños está encareciendo la validación "post-silicon". Su coste excede el de diseño, y el número de errores descubiertos está aumentando durante la validación y ya en manos de los clientes. La localización y el diagnóstico de errores son los mayores problemas, empeorados por las altas latencias en la manifestación de errores, por la poca observabilidad interna y por el coste de generar las señales esperadas. Esta tesis explora dos direcciones para tratar algunos de los retos causados por la creciente vulnerabilidad hardware y por las limitaciones de los enfoques de validación. Primero exploramos mecanismos para detectar múltiples fuentes de fallos durante el tiempo de vida de los procesadores (errores transitorios, intermitentes, permanentes y de diseño). Nuestras soluciones son de un paradigma donde la fiabilidad se construye explotando invariantes microarquitectónicos genéricos, en lugar de basarse en re-ejecución o en protección ad-hoc. Para ello descomponemos las funcionalidades básicas de un procesador y proponemos tres soluciones de `runtime verification' que combinadas permiten una detección de errores a nivel global. Estas tres soluciones son: un verificador de flujo de datos de registro y de computación, un verificador de flujo de datos de memoria y un verificador de flujo de control. Nuestras técnicas usan el concepto de firmas y permiten a los diseñadores ajustar los niveles de protección a sus necesidades, mediante compensaciones en área, consumo energético y rendimiento. Nuestros estudios de inyección de errores revelan que los métodos propuestos obtienen altos niveles de protección, a la vez que causan menos costes que las soluciones existentes. A continuación, esta tesis explora la aplicabilidad de estos esquemas a las fases de validación. Proponemos una solución de localización y diagnóstico de errores para el flujo de datos de memoria que combina nuestro mecanismo de detección de errores, junto con un mecanismo de logging de bajo coste y un programa de diagnóstico. Cierta actividad interna es continuamente registrada en una zona de memoria cuya capacidad puede ser expandida para satisfacer las necesidades de validación. La solución permite descubrir bugs, reduciendo la necesidad de calcular los resultados esperados. Al detectar un error, el algoritmo de diagnóstico analiza el registro para automáticamente localizar el bug y determinar su causa. Nuestros estudios muestran un alto grado de localización y de precisión de diagnóstico a un coste muy bajo de rendimiento y área. El resultado es una simplificación de las prácticas actuales de depuración, que son enormemente manuales, incómodas y largas. En conjunto, las soluciones de esta tesis capacitan a la industria a producir procesadores más fiables, a medida que la tecnología evoluciona hacia diseños más complejos y más vulnerables

    Software architecture for modeling and distributing virtual environments

    Get PDF

    Attribute-Level Versioning: A Relational Mechanism for Version Storage and Retrieval

    Get PDF
    Data analysts today have at their disposal a seemingly endless supply of data and repositories hence, datasets from which to draw. New datasets become available daily thus making the choice of which dataset to use difficult. Furthermore, traditional data analysis has been conducted using structured data repositories such as relational database management systems (RDBMS). These systems, by their nature and design, prohibit duplication for indexed collections forcing analysts to choose one value for each of the available attributes for an item in the collection. Often analysts discover two or more datasets with information about the same entity. When combining this data and transforming it into a form that is usable in an RDBMS, analysts are forced to deconflict the collisions and choose a single value for each duplicated attribute containing differing values. This deconfliction is the source of a considerable amount of guesswork and speculation on the part of the analyst in the absence of professional intuition. One must consider what is lost by discarding those alternative values. Are there relationships between the conflicting datasets that have meaning? Is each dataset presenting a different and valid view of the entity or are the alternate values erroneous? If so, which values are erroneous? Is there a historical significance of the variances? The analysis of modern datasets requires the use of specialized algorithms and storage and retrieval mechanisms to identify, deconflict, and assimilate variances of attributes for each entity encountered. These variances, or versions of attribute values, contribute meaning to the evolution and analysis of the entity and its relationship to other entities. A new, distinct storage and retrieval mechanism will enable analysts to efficiently store, analyze, and retrieve the attribute versions without unnecessary complexity or additional alterations of the original or derived dataset schemas. This paper presents technologies and innovations that assist data analysts in discovering meaning within their data and preserving all of the original data for every entity in the RDBMS

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation
    corecore