63 research outputs found

    Dynamically reconfigurable architecture for embedded computer vision systems

    Get PDF
    The objective of this research work is to design, develop and implement a new architecture which integrates on the same chip all the processing levels of a complete Computer Vision system, so that the execution is efficient without compromising the power consumption while keeping a reduced cost. For this purpose, an analysis and classification of different mathematical operations and algorithms commonly used in Computer Vision are carried out, as well as a in-depth review of the image processing capabilities of current-generation hardware devices. This permits to determine the requirements and the key aspects for an efficient architecture. A representative set of algorithms is employed as benchmark to evaluate the proposed architecture, which is implemented on an FPGA-based system-on-chip. Finally, the prototype is compared to other related approaches in order to determine its advantages and weaknesses

    Superscalar RISC-V Processor with SIMD Vector Extension

    Get PDF
    With the increasing number of digital products in the market, the need for robust and highly configurable processors rises. The demand is convened by the stable and extensible open-sourced RISC-V instruction set architecture. RISC-V processors are becoming popular in many fields of applications and research. This thesis presents a dual-issue superscalar RISC-V processor design with dynamic execution. The proposed design employs the global sharing scheme for branch prediction and Tomasulo algorithm for out-of-order execution. The processor is capable of speculative execution with five checkpoints. Data flow in the instruction dispatch and commit stages is optimized to achieve higher instruction throughput. The superscalar processor is extended with a customized vector instruction set of single-instruction-multiple-data computations to specifically improve the performance on machine learning tasks. According to the definition of the proposed vector instruction set, the scratchpad memory and element-wise arithmetic units are implemented in the vector co-processor. Different test programs are evaluated on the fully-tested superscalar processor. Compared to the reference work, the proposed design improves 18.9% on average instruction throughput and 4.92% on average prediction hit rate, with 16.9% higher operating clock frequency synthesized on the Intel Arria 10 FPGA board. The forward propagation of a convolution neural network model is evaluated by the standalone superscalar processor and the integration of the vector co-processor. The vector program with software-level optimizations achieves 9.53× improvement on instruction throughput and 10.18× improvement on real-time throughput. Moreover, the integration also provides 2.22× energy efficiency compared with the superscalar processor along

    Smart vision in system-on-chip applications

    Get PDF
    In the last decade the ability to design and manufacture integrated circuits with higher transistor densities has led to the integration of complete systems on a single silicon die. These are commonly referred to as System-on-Chip (SoC). As SoCs processes can incorporate multiple technologies it is now feasible to produce single chip camera systems with embedded image processing, known as Imager-on-Chips (IoC). The development of IoCs is complicated due to the mixture of digital and analog components and the high cost of prototyping these designs using silicon processes. There are currently no re-usable prototyping platforms that specifically address the needs of IoC development. This thesis details a new prototyping platform specifically for use in the development of low-cost mass-market IoC applications. FPGA technology was utilised to implement a frame-based processing architecture suitable for supporting a range of real-time imaging and machine vision applications. To demonstrate the effectiveness of the prototyping platform, an example object counting and highlighting application was developed and functionally verified in real-time. A high-level IoC cost model was formulated to calculate the cost of manufacturing prototyped applications as a single IoC. This highlighted the requirement for careful analysis of optical issues, embedded imager array size and the silicon process used to ensure the desired IoC unit cost was achieved. A modified version of the FPGA architecture, which would result in improving the DSP performance, is also proposed

    Recent Advances in Embedded Computing, Intelligence and Applications

    Get PDF
    The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads formerly reserved for the cloud, such as deep learning. These devices allow processing close to where data are generated, avoiding bottlenecks due to communication limitations. The efficient integration of hardware, software and artificial intelligence capabilities deployed in real sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the fostering of the offloading processing functionalities to the edge. In this Special Issue, researchers have contributed nine peer-reviewed papers covering a wide range of topics in the area of edge intelligence. Among them are hardware-accelerated implementations of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and neuromorphic machine learning, and embedded recommender systems

    Split and Shift Methodology: Overcoming Hardware Limitations on Cellular Processor Arrays for Image Processing

    Get PDF
    Na era multimedia, o procesado de imaxe converteuse nun elemento de singular importancia nos dispositivos electrónicos. Dende as comunicacións (p.e. telemedicina), a seguranza (p.e. recoñecemento retiniano) ou control de calidade e de procesos industriais (p.e. orientación de brazos articulados, detección de defectos do produto), pasando pola investigación (p.e. seguimento de partículas elementais) e diagnose médica (p.e. detección de células estrañas, identificaciónn de veas retinianas), hai un sinfín de aplicacións onde o tratamento e interpretación automáticas de imaxe e fundamental. O obxectivo último será o deseño de sistemas de visión con capacidade de decisión. As tendencias actuais requiren, ademais, a combinación destas capacidades en dispositivos pequenos e portátiles con resposta en tempo real. Isto propón novos desafíos tanto no deseño hardware como software para o procesado de imaxe, buscando novas estruturas ou arquitecturas coa menor area e consumo de enerxía posibles sen comprometer a funcionalidade e o rendemento

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    Diseño CMOS de un sistema de visión “on-chip” para aplicaciones de muy alta velocidad

    Get PDF
    Falta palabras claveEsta Tesis presenta arquitecturas, circuitos y chips para el diseño de sensores de visión CMOS con procesamiento paralelo embebido. La Tesis reporta dos chips, en concreto: El chip Q-Eye; El chip Eye-RIS_VSoC.. Y dos sistemas de visión construidos con estos chips y otros sistemas “off-chip” adicionales, como FPGAs, en concreto: El sistema Eye-RIS_v1; El sistema Eye-RIS_v2. Estos chips y sistemas están concebidos para ejecutar tareas de visión a muy alta velocidad y con consumos de potencia moderados. Los sistemas resultantes son, además, compactos y por lo tanto ventajosos en términos del factor SWaP cuando se los compara con arquitecturas convencionales formadas por sensores de imágenes convencionales seguidos de procesadores digitales. La clave de estas ventajas en términos de SWaP y velocidad radica en el uso de sensores-procesadores, en lugar de meros sensores, en la interface de los sistemas de visión. Estos sensores-procesadores embeben procesadores programables de señal-mixta dentro del pixel y son capaces tanto de adquirir imágenes como de pre-procesarlas para extraer características, eliminar información redundante y reducir el número de datos que se transmiten fuera del sensor para su procesamiento ulterior. El núcleo de la tesis es el sensor-procesador Q-Eye, que se usa como interface en los sistemas Eye-RIS. Este sensor-procesador embebe una arquitectura de procesamiento formada por procesadores de señal-mixta distribuidos por pixel. Sus píxeles son por tanto estructuras multi-funcionales complejas. De hecho, son programables, incorporan memorias e interactúan con sus vecinos para realizar una variedad de operaciones, tales como: Convoluciones lineales con máscaras programables; Difusiones controladas por tiempo y nivel de señal, a través de un “grid” resistivo embebido en el plano focal; Aritmética de imágenes; Flujo de programación dependiente de la señal; Conversión entre los dominios de datos: imagen en escala de grises e imagen binaria; Operaciones lógicas en imágenes binarias; Operaciones morfológicas en imágenes binarias. etc. Con respecto a otros píxeles multi-función y sensores-procesadores anteriores, el Q-Eye reporta entre otras las siguientes ventajas: Mayor calidad de la imagen y mejores prestaciones de las funcionalidades embebidas en el chip; Mayor velocidad de operación y mejor gestión de la energía disponible; Mayor versatilidad para integración en sistemas de visión industrial. De hecho, los sistemas Eye-RIS son los primeros sistemas de visión industriales dotados de las siguientes características: Procesamiento paralelo distribuido y progresivo; Procesadores de señal-mixta fiables, robustos y con errores controlados; Programabilidad distribuida. La Tesis incluye descripciones detalladas de la arquitectura y los circuitos usados en el pixel del Q-Eye, del propio chip Q-Eye y de los sistemas de visión construidos en base a este chip. Se incluyen también ejemplos de los distintos chips en operaciónThis Thesis presents architectures, circuits and chips for the implementation of CMOS VISION SENSORS with embedded parallel processing. The Thesis reports two chips, namely: Q-eye chip; Eye-RIS_VSoC chip, and two vision systems realized by using these chips and some additional “off-chip” circuitry, such as FPGAs. These vision systems are: Eye-RIS_v1 system; Eye-RIS_v2 system. The chips and systems reported in the Thesis are conceived to perform vision tasks at very high speed and with moderate power consumption. The proposed vision systems are also compact and advantageous in terms of SWaP factors as compared with conventional architectures consisting of standard image sensor followed by digital processors. The key of these advantages in terms of SWaP and speed lies in the use of sensors-processors, rather than mere sensors, in the front-end interface of vision systems. These sensors-processors embed mixed-signal programmable processors inside the pixel. Therefore, they are able to acquire images and process them to extract the features, removing the redundant information and reducing the data throughput for later processing. The core of the Thesis is the sensor-processor Q-Eye, which is used as front-end in the Eye-RIS systems. This sensor-processor embeds a processing architecture composed by mixed-signal processors distributed per pixel. Then, its pixels are complex multi-functional structures. In fact, they are programmable, incorporate memories and interact with its neighbors in order to carry out a set of operations, including: Linear convolutions with programmable linear masks; Time- and signal-controlled diffusions (by means of an embedded resistive grid); Image arithmetic; Signal-dependent data scheduling; Gray-scale to binary transformation; Logic operation on binary images; Mathematical morphology on binary images, etc. As compared with previous multi-function pixels and sensors-processors, the Q-Eye brings among other the following advantages: Higher image quality and better performances of functionalities embedded on chip; Higher operation speed and better management of energy budget; More versatility for integration in industrial vision systems. In fact, the Eye-RIS systems are the first industrial vision systems equipped with the following characteristics: Parallel distributed and progressive processing; Reliable, robust mixed-signal processors with handled errors; Distributed programmability. This Thesis includes detailed descriptions of architecture and circuits used in the Q-Eye pixel, in the Q-Eye chip itself and in the vision systems developed based on this chip. Also, several examples of chips and systems in operation are presented

    Technology 2003: The Fourth National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings from symposia of the Technology 2003 Conference and Exposition, Dec. 7-9, 1993, Anaheim, CA, are presented. Volume 2 features papers on artificial intelligence, CAD&E, computer hardware, computer software, information management, photonics, robotics, test and measurement, video and imaging, and virtual reality/simulation

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering
    corecore