433 research outputs found

    The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003

    Get PDF
    The SWISS-PROT protein knowledgebase (http://www.expasy.org/sprot/ and http://www.ebi.ac.uk/swissprot/) connects amino acid sequences with the current knowledge in the Life Sciences. Each protein entry provides an interdisciplinary overview of relevant information by bringing together experimental results, computed features and sometimes even contradictory conclusions. Detailed expertise that goes beyond the scope of SWISS-PROT is made available via direct links to specialised databases. SWISS-PROT provides annotated entries for all species, but concentrates on the annotation of entries from human (the HPI project) and other model organisms to ensure the presence of high quality annotation for representative members of all protein families. Part of the annotation can be transferred to other family members, as is already done for microbes by the High-quality Automated and Manual Annotation of microbial Proteomes (HAMAP) project. Protein families and groups of proteins are regularly reviewed to keep up with current scientific findings. Complementarily, TrEMBL strives to comprise all protein sequences that are not yet represented in SWISS-PROT, by incorporating a perpetually increasing level of mostly automated annotation. Researchers are welcome to contribute their knowledge to the scientific community by submitting relevant findings to SWISS-PROT at [email protected]

    The computational analysis of post-translational modifications

    Get PDF
    The post-translational modification (PTMs) of proteins presents a means to increase the proteome size and diversity of an organism through the inclusion of structural elements not encoded at the sequence-level alone. Their erroneous inclusion or exclusion has been linked to a variety of diseases and disorders thus their characterisation has the potential to present viable drug targets. The proliferation of newer high-throughput methods, such as mass spectrometry, to identify such modifications has led to a rapid increase in the number of databases and tools to display and analyse such vast amounts of data effectively. This study covers the development of one such tool; PTM Browser, and the construction of the underlying database that it is based upon. This new database was initially seeded with annotations from the Swiss-Prot and Phospho.ELM resources. The initial database of PTMs was then expanded to include a large repertoire of previously unannotated proteins for a selection of topical species (e.g. Danio rerio and Tetraodon nigroviridis). Orthologue assignments have also been added to the database – to allow for queries to be performed regarding the conservation of modifications between homologous proteins. The PTM Browser tool allows for a full exploration of this new database of PTMs – with a special focus on allowing users to identify modifications that are both shared between and are specific to particular species. This tool is freely available for non-commercial use at the following URL: http://www.ptmbrowser.org. An analysis is presented on the conservation of modifications between members of the tumour suppressor family, p53, using this new tool. This tool has also been used to analysis the conservation of modifications between super-kingdoms and Eukaryote species

    ProteoClade: A taxonomic toolkit for multi-species and metaproteomic analysis

    Get PDF
    We present ProteoClade, a Python toolkit that performs taxa-specific peptide assignment, protein inference, and quantitation for multi-species proteomics experiments. ProteoClade scales to hundreds of millions of protein sequences, requires minimal computational resources, and is open source, multi-platform, and accessible to non-programmers. We demonstrate its utility for processing quantitative proteomic data derived from patient-derived xenografts and its speed and scalability enable a novel de novo proteomic workflow for complex microbiota samples

    An analysis of the Sargasso Sea resource and the consequences for database composition

    Get PDF
    Background: The environmental sequencing of the Sargasso Sea has introduced a huge new resource of genomic information. Unlike the protein sequences held in the current searchable databases, the Sargasso Sea sequences originate from a single marine environment and have been sequenced from species that are not easily obtainable by laboratory cultivation. The resource also contains very many fragments of whole protein sequences, a side effect of the shotgun sequencing method.These sequences form a significant addendum to the current searchable databases but also present us with some intrinsic difficulties. While it is important to know whether it is possible to assign function to these sequences with the current methods and whether they will increase our capacity to explore sequence space, it is also interesting to know how current bioinformatics techniques will deal with the new sequences in the resource.Results: The Sargasso Sea sequences seem to introduce a bias that decreases the potential of current methods to propose structure and function for new proteins. In particular the high proportion of sequence fragments in the resource seems to result in poor quality multiple alignments.Conclusion: These observations suggest that the new sequences should be used with care, especially if the information is to be used in large scale analyses. On a positive note, the results may just spark improvements in computational and experimental methods to take into account the fragments generated by environmental sequencing techniques

    BioWarehouse: a bioinformatics database warehouse toolkit

    Get PDF
    BACKGROUND: This article addresses the problem of interoperation of heterogeneous bioinformatics databases. RESULTS: We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. CONCLUSION: BioWarehouse embodies significant progress on the database integration problem for bioinformatics

    Provenance, propagation and quality of biological annotation

    Get PDF
    PhD ThesisBiological databases have become an integral part of the life sciences, being used to store, organise and share ever-increasing quantities and types of data. Biological databases are typically centred around raw data, with individual entries being assigned to a single piece of biological data, such as a DNA sequence. Although essential, a reader can obtain little information from the raw data alone. Therefore, many databases aim to supplement their entries with annotation, allowing the current knowledge about the underlying data to be conveyed to a reader. Although annotations come in many di erent forms, most databases provide some form of free text annotation. Given that annotations can form the foundations of future work, it is important that a user is able to evaluate the quality and correctness of an annotation. However, this is rarely straightforward. The amount of annotation, and the way in which it is curated, varies between databases. For example, the production of an annotation in some databases is entirely automated, without any manual intervention. Further, sections of annotations may be reused, being propagated between entries and, potentially, external databases. This provenance and curation information is not always apparent to a user. The work described within this thesis explores issues relating to biological annotation quality. While the most valuable annotation is often contained within free text, its lack of structure makes it hard to assess. Initially, this work describes a generic approach that allows textual annotations to be quantitatively measured. This approach is based upon the application of Zipf's Law to words within textual annotation, resulting in a single value, . The relationship between the value and Zipf's principle of least e ort provides an indication as to the annotations quality, whilst also allowing annotations to be quantitatively compared. Secondly, the thesis focuses on determining annotation provenance and tracking any subsequent propagation. This is achieved through the development of a visualisation - i - framework, which exploits the reuse of sentences within annotations. Utilising this framework a number of propagation patterns were identi ed, which on analysis appear to indicate low quality and erroneous annotation. Together, these approaches increase our understanding in the textual characteristics of biological annotation, and suggests that this understanding can be used to increase the overall quality of these resources

    A Computational Strategy for Protein Function Assignment Which Addresses the Multidomain Problem

    Get PDF
    A method for assigning functions to unknown sequences based on finding correlations between short signals and functional annotations in a protein database is presented. This approach is based on keyword (KW) and feature (FT) information stored in the SWISS-PROT database. The former refers to particular protein characteristics and the latter locates these characteristics at a specific sequence position. In this way, a certain keyword is only assigned to a sequence if sequence similarity is found in the position described by the FT field. Exhaustive tests performed over sequences with homologues (cluster set) and without homologues (singleton set) in the database show that assigning functions is much ’cleaner’ when information about domains (FT field) is used, than when only the keywords are used

    Large-scale analysis of human alternative protein isoforms: pattern classification and correlation with subcellular localization signals

    Get PDF
    We investigated human alternative protein isoforms of >2600 genes based on full-length cDNA clones and SwissProt. We classified the isoforms and examined their co-occurrence for each gene. Further, we investigated potential relationships between these changes and differential subcellular localization. The two most abundant patterns were the one with different C-terminal regions and the one with an internal insertion, which together account for 43% of the total. Although changes of the N-terminal region are less common than those of the C-terminal region, extension of the C-terminal region is much less common than that of the N-terminal region, probably because of the difficulty of removing stop codons in one isoform. We also found that there are some frequently used combinations of co-occurrence in alternative isoforms. We interpret this as evidence that there is some structural relationship which produces a repertoire of isoformal patterns. Finally, many terminal changes are predicted to cause differential subcellular localization, especially in targeting either peroxisomes or mitochondria. Our study sheds new light on the enrichment of the human proteome through alternative splicing and related events. Our database of alternative protein isoforms is available through the internet

    Overlap and diversity in antimicrobial peptide databases: Compiling a non-redundant set of sequences

    Get PDF
    Motivation: The large variety of antimicrobial peptide (AMP) databases developed to date are characterized by a substantial overlap of data and similarity of sequences. Our goals are to analyze the levels of redundancy for all available AMP databases and use this information to build a new nonredundant sequence database. For this purpose, a new software tool is introduced. Results: A comparative study of 25 AMP databases reveals the overlap and diversity among them and the internal diversity within each database. The overlap analysis shows that only one database (Peptaibol) contains exclusive data, not present in any other, whereas all sequences in the LAMP-Patent database are included in CAMP-Patent. However, the majority of databases have their own set of unique sequences, as well as some overlap with other databases. The complete set of non-duplicate sequences comprises 16 990 cases, which is almost half of the total number of reported peptides. On the other hand, the diversity analysis identifies the most and least diverse databases and proves that all databases exhibit some level of redundancy. Finally, we present a new parallel-free software, named Dover Analyzer, developed to compute the overlap and diversity between any number of databases and compile a set of non-redundant sequences. These results are useful for selecting or building a suitable representative set of AMPs, according to specific needs. © The Author 2015. Published by Oxford University Press. All rights reserved.Antimicrobial Cationic Peptide
    corecore