1,701 research outputs found

    IMAGE AND VIDEO ENHANCEMENT USING SPARSE CODING, BELIEF PROPAGATION AND MATRIX COMPLETION

    Get PDF
    Super resolution as an exciting application in image processing was studied widely in the literature. This dissertation presents new approaches to video super resolution, based on sparse coding and belief propagation. First, find candidate match pixels on multiple frames using sparse coding and belief propagation. Second, incorporate information from these candidate pixels with weights computed using the Nonlocal-Means (NLM) method in the first approach or using SCoBeP method in the second approach. The effectiveness of the proposed methods is demonstrated for both synthetic and real video sequences in the experiment section. In addition, the experimental results show that my models are naturally robust in handling super resolution on video sequences affected by scene motions and/or small camera motions. Moreover, in this dissertation, I describe a denoising method using low-rank matrix completion. In the proposed denoising approach, I present a patch-based video denoising algorithm by grouping similar patches and then formulating the problem of removing noise using a decomposition approach for low-rank matrix completion. Experiments show that the proposed approach robustly removes mixed noise such as impulsive noise, Poisson noise, and Gaussian noise from any natural noisy video. Moreover, my approach outperforms state-of-the-art denoising techniques such as VBM3D and 3DWTF in terms of both time and quality. My technique also achieves significant improvement over time against other matrix completion methods

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Evaluation of Generative Models for Predicting Microstructure Geometries in Laser Powder Bed Fusion Additive Manufacturing

    Get PDF
    In-situ process monitoring for metals additive manufacturing is paramount to the successful build of an object for application in extreme or high stress environments. In selective laser melting additive manufacturing, the process by which a laser melts metal powder during the build will dictate the internal microstructure of that object once the metal cools and solidifies. The difficulty lies in that obtaining enough variety of data to quantify the internal microstructures for the evaluation of its physical properties is problematic, as the laser passes at high speeds over powder grains at a micrometer scale. Imaging the process in-situ is complex and cost-prohibitive. However, generative modes can provide new artificially generated data. Generative adversarial networks synthesize new computationally derived data through a process that learns the underlying features corresponding to the different laser process parameters in a generator network, then improves upon those artificial renderings by evaluating through the discriminator network. While this technique was effective at delivering high-quality images, modifications to the network through conditions showed improved capabilities at creating these new images. Using multiple evaluation metrics, it has been shown that generative models can be used to create new data for various laser process parameter combinations, thereby allowing a more comprehensive evaluation of ideal laser conditions for any particular build

    Structure-aware image denoising, super-resolution, and enhancement methods

    Get PDF
    Denoising, super-resolution and structure enhancement are classical image processing applications. The motive behind their existence is to aid our visual analysis of raw digital images. Despite tremendous progress in these fields, certain difficult problems are still open to research. For example, denoising and super-resolution techniques which possess all the following properties, are very scarce: They must preserve critical structures like corners, should be robust to the type of noise distribution, avoid undesirable artefacts, and also be fast. The area of structure enhancement also has an unresolved issue: Very little efforts have been put into designing models that can tackle anisotropic deformations in the image acquisition process. In this thesis, we design novel methods in the form of partial differential equations, patch-based approaches and variational models to overcome the aforementioned obstacles. In most cases, our methods outperform the existing approaches in both quality and speed, despite being applicable to a broader range of practical situations.Entrauschen, Superresolution und Strukturverbesserung sind klassische Anwendungen der Bildverarbeitung. Ihre Existenz bedingt sich in dem Bestreben, die visuelle Begutachtung digitaler Bildrohdaten zu unterstützen. Trotz erheblicher Fortschritte in diesen Feldern bedürfen bestimmte schwierige Probleme noch weiterer Forschung. So sind beispielsweise Entrauschungsund Superresolutionsverfahren, welche alle der folgenden Eingenschaften besitzen, sehr selten: die Erhaltung wichtiger Strukturen wie Ecken, Robustheit bezüglich der Rauschverteilung, Vermeidung unerwünschter Artefakte und niedrige Laufzeit. Auch im Gebiet der Strukturverbesserung liegt ein ungelöstes Problem vor: Bisher wurde nur sehr wenig Forschungsaufwand in die Entwicklung von Modellen investieret, welche anisotrope Deformationen in bildgebenden Verfahren bewältigen können. In dieser Arbeit entwerfen wir neue Methoden in Form von partiellen Differentialgleichungen, patch-basierten Ansätzen und Variationsmodellen um die oben erwähnten Hindernisse zu überwinden. In den meisten Fällen übertreffen unsere Methoden nicht nur qualitativ die bisher verwendeten Ansätze, sondern lösen die gestellten Aufgaben auch schneller. Zudem decken wir mit unseren Modellen einen breiteren Bereich praktischer Fragestellungen ab
    corecore