202 research outputs found

    Removing Cycles in Esterel Programs

    Get PDF
    Programs written in the synchronous programming language Esterel may contain statically cyclic dependencies of signals, which inhibits the application of certain compilation approaches that rely on static scheduling. This talk proposes an algorithm which, given a constructive synchronous program, performs a semantics-preserving source-level code transformation that removes cyclic signal dependencies. The transformation exploits the monotonicity of constructive programs, and is illustrated in the context of Esterel, but should be applicable to other synchronous languages as well

    Removing cycles in esterel programs

    Get PDF
    Esterel belongs to the family of synchronous programming languages, which are affected by cyclic signal dependencies. This prohibits a static scheduling, limiting the choice of available compilation techniques for programs with such cycles. This work proposes an algorithm that, given a constructive synchronous Esterel program, performs a semantics-preserving source-level code transformation that removes cyclic signal dependencies. The transformation is divided into two parts: Detection of cycles and iterative resolution of these cycles. It is based on the replacement of cycle signals by a signal expression involving no other cycle signals, thereby breaking the cycle. This transformation of cyclic Esterel programs enables the use of efficient compilation techniques, which are only available for acyclic programs. Furthermore, experiments indicate that the code transformation can even improve code quality produced by compilers that can already handle cyclic programs

    Efficient Compilation of Cyclic Synchronous Programs

    Get PDF
    Synchronous programs may contain cyclic signal interdependencies. This prohibits a static scheduling, which limits the choice of available compilation techniques for such programs. This paper proposes an algorithm which, given a constructive synchronous program, performs a semantics-preserving source-level code transformation that removes cyclic signal dependencies, and also exposes opportunities for further optimization. The transformation exploits the monotonicity of constructive programs, and is illustrated in the context of Esterel; however, it should be applicable to other synchronous languages as well. Experimental results indicate the efficacy of this approach, resulting in reduced run times and/or smaller code sizes, and potentially reduced compilation times as well. Furthermore, experiments with generating hardware indicate that here as well the synthesis results can be improved

    Executing Safe State Machines on a Reactive Processor

    Get PDF
    Safe State Machines (SSMs) are a Statechart dialect with precise synchronous semantics, used to describe the behavior of reactive systems. A natural target for executing SSMs are reactive processors, which have an instruction set architecture (ISA) particularly well-suited for reactive control flow. When synthesizing SSMs into code, this is traditionally done via the synchronous language Esterel. However, this is not always straightforward; transitions in SSMs can jump arbitrarily between states, and there is no Esterel statement that matches this. We here propose to circumvent this by synthesizing SSMs directly onto a reactive ISA that can encode transitions directly as GOTOs. This not only has the potential for smaller and faster code, but preserves the structure of the SSM much better that going via Esterel. Conversely, we note that SSMs appear easier to implement on a reactive processor than Esterel, notably because there is not exception handling required

    A Concurrent Reactive Esterel Processor based on Multi-Threading

    Get PDF
    The synchronous language Esterel is well-suited for programming control-dominated reactive systems at the system level. It provides non-traditional control structures, in particular concurrency and various forms of preemption, which allow to concisely express reactive behavior. As these control structures cannot be mapped easily onto traditional, sequential processors, an alternative approach that has emerged recently makes use of special-purpose reactive processors. However, the designs proposed so far have limitations regarding completeness of the language support, and did not really take advantage of compile-time knowledge to optimize resource usage. This paper presents a reactive processor, the Kiel Esterel Processor 3a (KEP3a), and its compiler. The KEP3a improves on earlier designs in several areas; most notable are the support for exception handling and the provision of context-dependent preemption handling instructions. The KEP3a compiler presented here is to our knowledge the first for multi-threaded reactive processors. The translation of Esterel's preemption constructs onto KEP3a assembler is straightforward; however, a challenge is the correct and efficient representation of Esterel's concurrency. The compiler generates code that respects data and control dependencies using the KEP3a priority-based scheduling mechanism. We present a priority assignment approach that makes use of a novel concurrent control flow graph and has a complexity that in practice tends to be linear in the size of the program. Unlike earlier Esterel compilation schemes, this approach avoids unnecessary context switches by considering each thread's actual execution state at run time. Furthermore, it avoids code replication present in other approaches

    A Concurrent Reactive Esterel Processor Based on Multi-Threading

    Get PDF
    Esterel is a concurrent synchronous language for developing reactive systems. Classically, Esterel programs are either compiled into software, such as a C program that is then executed on a standard microprocessor, or into hardware. An alternative approach, which tries to combine the efficiency of a software solution with an efficiency close to a hardware solution, is the reactive processing approach, where the Esterel program is executed on a specialized processor. A principal difficulty when compiling onto a reactive processor is the faithful, efficient implementation of concurrency. One approach for implementing concurrency is multiprocessing, where sequential reactive processors are replicated and tightly synchronized to achieve concurrency. This allows concurrency at the top level; however, it is not obvious how this approach supports the arbitrary nesting of preemption and concurrency that is permitted in Esterel. This paper presents a novel reactive processor architecture, the Multi-threaded Esterel Processor (MEP), which overcomes this limitation and also scales well to large degrees of concurrency. Rather than replicating sequential processors, the MEP combines a single main processing element with independent control units that implement the concurrency and preemption operators and that allow the arbitrary combination of these operators in the executed program

    Improved Controller Synthesis from Esterel

    Get PDF
    We present a new procedure for automatically synthesizing controllers from high-level Esterel specifications. Unlike existing \textsc{rtl} synthesis approaches, this approach frees the designer from tedious bit-level state encoding and certain types of inter-machine communication. Experimental results suggest that even with a fairly primitive state assignment heuristic, our compiler consistently produces smaller, slightly faster circuits that the existing Esterel compiler. We mainly attribute this to a different style of distributing state bits throughout the circuit. Initial results are encouraging, but some hand-optimized encodings suggest room for a better state assignment algorithm. We are confident that such improvements will make our technique even more practical

    A sequentially constructive circuit semantics for Esterel

    Get PDF
    Static Single Assignment (SSA) is an established concept that facilitates various program optimizations. However, it is typically restricted to sequential programming. We present an approach that extends SSA for concurrent, reactive programming, specifically for the synchronous language Esterel. This extended SSA transformation expands the class of programs that can be compiled by existing Esterel compilers without causality problems. It also offers a new, efficient solution for the well-studied signal reincarnation problem. Finally, our approach rules out speculation/backtracking, unlike the recently proposed sequentially constructive model of computation
    • …
    corecore