276 research outputs found

    Inserting Multiple Edges into a Planar Graph

    Get PDF
    Let G be a connected planar (but not yet embedded) graph and F a set of additional edges not in G. The multiple edge insertion problem (MEI) asks for a drawing of G+F with the minimum number of pairwise edge crossings, such that the subdrawing of G is plane. An optimal solution to this problem is known to approximate the crossing number of the graph G+F. Finding an exact solution to MEI is NP-hard for general F, but linear time solvable for the special case of |F|=1 [Gutwenger et al, SODA 2001/Algorithmica] and polynomial time solvable when all of F are incident to a new vertex [Chimani et al, SODA 2009]. The complexity for general F but with constant k=|F| was open, but algorithms both with relative and absolute approximation guarantees have been presented [Chuzhoy et al, SODA 2011], [Chimani-Hlineny, ICALP 2011]. We show that the problem is fixed parameter tractable (FPT) in k for biconnected G, or if the cut vertices of G have bounded degrees. We give the first exact algorithm for this problem; it requires only O(|V(G)|) time for any constant k

    Geometric Graph Theory and Wireless Sensor Networks

    Full text link
    In this work, we apply geometric and combinatorial methods to explore a variety of problems motivated by wireless sensor networks. Imagine sensors capable of communicating along straight lines except through obstacles like buildings or barriers, such that the communication network topology of the sensors is their visibility graph. Using a standard distributed algorithm, the sensors can build common knowledge of their network topology. We first study the following inverse visibility problem: What positions of sensors and obstacles define the computed visibility graph, with fewest obstacles? This is the problem of finding a minimum obstacle representation of a graph. This minimum number is the obstacle number of the graph. Using tools from extremal graph theory and discrete geometry, we obtain for every constant h that the number of n-vertex graphs that admit representations with h obstacles is 2o(n2). We improve this bound to show that graphs requiring Ω(n / log2 n) obstacles exist. We also study restrictions to convex obstacles, and to obstacles that are line segments. For example, we show that every outerplanar graph admits a representation with five convex obstacles, and that allowing obstacles to intersect sometimes decreases their required number. Finally, we study the corresponding problem for sensors equipped with GPS. Positional information allows sensors to establish common knowledge of their communication network geometry, hence we wish to compute a minimum obstacle representation of a given straight-line graph drawing. We prove that this problem is NP-complete, and provide a O(logOPT)-factor approximation algorithm by showing that the corresponding hypergraph family has bounded Vapnik-Chervonenkis dimension

    Complexity of Token Swapping and its Variants

    Full text link
    In the Token Swapping problem we are given a graph with a token placed on each vertex. Each token has exactly one destination vertex, and we try to move all the tokens to their destinations, using the minimum number of swaps, i.e., operations of exchanging the tokens on two adjacent vertices. As the main result of this paper, we show that Token Swapping is W[1]W[1]-hard parameterized by the length kk of a shortest sequence of swaps. In fact, we prove that, for any computable function ff, it cannot be solved in time f(k)no(k/logk)f(k)n^{o(k / \log k)} where nn is the number of vertices of the input graph, unless the ETH fails. This lower bound almost matches the trivial nO(k)n^{O(k)}-time algorithm. We also consider two generalizations of the Token Swapping, namely Colored Token Swapping (where the tokens have different colors and tokens of the same color are indistinguishable), and Subset Token Swapping (where each token has a set of possible destinations). To complement the hardness result, we prove that even the most general variant, Subset Token Swapping, is FPT in nowhere-dense graph classes. Finally, we consider the complexities of all three problems in very restricted classes of graphs: graphs of bounded treewidth and diameter, stars, cliques, and paths, trying to identify the borderlines between polynomial and NP-hard cases.Comment: 23 pages, 7 Figure

    On the complexity of barrier resilience for fat regions and bounded ply

    Get PDF
    In the barrier resilience problem (introduced by Kumar et al., Wireless Networks 2007), we are given a collection of regions of the plane, acting as obstacles, and we would like to remove the minimum number of regions so that two fixed points can be connected without crossing any region. In this paper, we show that the problem is NP-hard when the collection only contains fat regions with bounded ply ¿ (even when they are axis-aligned rectangles of aspect ratio ). We also show that the problem is fixed-parameter tractable (FPT) for unit disks and for similarly-sized ß-fat regions with bounded ply ¿ and pairwise boundary intersections. We then use our FPT algorithm to construct an -approximation algorithm that runs in time, where .Peer ReviewedPostprint (author's final draft

    16th Scandinavian Symposium and Workshops on Algorithm Theory: SWAT 2018, June 18-20, 2018, Malmö University, Malmö, Sweden

    Get PDF

    A survey of parameterized algorithms and the complexity of edge modification

    Get PDF
    The survey is a comprehensive overview of the developing area of parameterized algorithms for graph modification problems. It describes state of the art in kernelization, subexponential algorithms, and parameterized complexity of graph modification. The main focus is on edge modification problems, where the task is to change some adjacencies in a graph to satisfy some required properties. To facilitate further research, we list many open problems in the area.publishedVersio
    corecore