816 research outputs found

    Artifact Removal Methods in EEG Recordings: A Review

    Get PDF
    To obtain the correct analysis of electroencephalogram (EEG) signals, non-physiological and physiological artifacts should be removed from EEG signals. This study aims to give an overview on the existing methodology for removing physiological artifacts, e.g., ocular, cardiac, and muscle artifacts. The datasets, simulation platforms, and performance measures of artifact removal methods in previous related research are summarized. The advantages and disadvantages of each technique are discussed, including regression method, filtering method, blind source separation (BSS), wavelet transform (WT), empirical mode decomposition (EMD), singular spectrum analysis (SSA), and independent vector analysis (IVA). Also, the applications of hybrid approaches are presented, including discrete wavelet transform - adaptive filtering method (DWT-AFM), DWT-BSS, EMD-BSS, singular spectrum analysis - adaptive noise canceler (SSA-ANC), SSA-BSS, and EMD-IVA. Finally, a comparative analysis for these existing methods is provided based on their performance and merits. The result shows that hybrid methods can remove the artifacts more effectively than individual methods

    EEG Artifact Removal Using a Wavelet Neural Network

    Get PDF
    !n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data

    Noise Reduction in EEG Signals using Convolutional Autoencoding Techniques

    Get PDF
    The presence of noise in electroencephalography (EEG) signals can significantly reduce the accuracy of the analysis of the signal. This study assesses to what extent stacked autoencoders designed using one-dimensional convolutional neural network layers can reduce noise in EEG signals. The EEG signals, obtained from 81 people, were processed by a two-layer one-dimensional convolutional autoencoder (CAE), whom performed 3 independent button pressing tasks. The signal-to-noise ratios (SNRs) of the signals before and after processing were calculated and the distributions of the SNRs were compared. The performance of the model was compared to noise reduction performance of Principal Component Analysis, with 95% explained variance, by comparing the Harrell-Davis decile differences between the SNR distributions of both methods and the raw signal SNR distribution for each task. It was found that the CAE outperformed PCA for the full dataset across all three tasks, however the CAE did not outperform PCA for the person specific datasets in any of the three tasks. The results indicate that CAEs can perform better than PCA for noise reduction in EEG signals, but performance of the model may be training size dependent

    AUTOMATED ARTIFACT REMOVAL AND DETECTION OF MILD COGNITIVE IMPAIRMENT FROM SINGLE CHANNEL ELECTROENCEPHALOGRAPHY SIGNALS FOR REAL-TIME IMPLEMENTATIONS ON WEARABLES

    Get PDF
    Electroencephalogram (EEG) is a technique for recording asynchronous activation of neuronal firing inside the brain with non-invasive scalp electrodes. EEG signal is well studied to evaluate the cognitive state, detect brain diseases such as epilepsy, dementia, coma, autism spectral disorder (ASD), etc. In this dissertation, the EEG signal is studied for the early detection of the Mild Cognitive Impairment (MCI). MCI is the preliminary stage of Dementia that may ultimately lead to Alzheimers disease (AD) in the elderly people. Our goal is to develop a minimalistic MCI detection system that could be integrated to the wearable sensors. This contribution has three major aspects: 1) cleaning the EEG signal, 2) detecting MCI, and 3) predicting the severity of the MCI using the data obtained from a single-channel EEG electrode. Artifacts such as eye blink activities can corrupt the EEG signals. We investigate unsupervised and effective removal of ocular artifact (OA) from single-channel streaming raw EEG data. Wavelet transform (WT) decomposition technique was systematically evaluated for effectiveness of OA removal for a single-channel EEG system. Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), is studied with four WT basis functions: haar, coif3, sym3, and bior4.4. The performance of the artifact removal algorithm was evaluated by the correlation coefficients (CC), mutual information (MI), signal to artifact ratio (SAR), normalized mean square error (NMSE), and time-frequency analysis. It is demonstrated that WT can be an effective tool for unsupervised OA removal from single channel EEG data for real-time applications.For the MCI detection from the clean EEG data, we collected the scalp EEG data, while the subjects were stimulated with five auditory speech signals. We extracted 590 features from the Event-Related Potential (ERP) of the collected EEG signals, which included time and spectral domain characteristics of the response. The top 25 features, ranked by the random forest method, were used for classification models to identify subjects with MCI. Robustness of our model was tested using leave-one-out cross-validation while training the classifiers. Best results (leave-one-out cross-validation accuracy 87.9%, sensitivity 84.8%, specificity 95%, and F score 85%) were obtained using support vector machine (SVM) method with Radial Basis Kernel (RBF) (sigma = 10, cost = 102). Similar performances were also observed with logistic regression (LR), further validating the results. Our results suggest that single-channel EEG could provide a robust biomarker for early detection of MCI. We also developed a single channel Electro-encephalography (EEG) based MCI severity monitoring algorithm by generating the Montreal Cognitive Assessment (MoCA) scores from the features extracted from EEG. We performed multi-trial and single-trail analysis for the algorithm development of the MCI severity monitoring. We studied Multivariate Regression (MR), Ensemble Regression (ER), Support Vector Regression (SVR), and Ridge Regression (RR) for multi-trial and deep neural regression for the single-trial analysis. In the case of multi-trial, the best result was obtained from the ER. In our single-trial analysis, we constructed the time-frequency image from each trial and feed it to the convolutional deep neural network (CNN). Performance of the regression models was evaluated by the RMSE and the residual analysis. We obtained the best accuracy with the deep neural regression method

    Real-Time, Hardware Efficient Ocular Artifact Removal From Single Channel EEG data Using a Hybrid Algebraic and Wavelet Algorithm

    Get PDF
    Electroencephalography (EEG) is a promising technique to record brain activities in natural settings. EEG signal usually gets contaminated by Ocular Artifacts (OA), removal of which is critical for the feature extraction and classification. With the increasing interest in wearable technologies, single channel EEG systems are becoming more prevalent that often require real-time signal processing for immediate feedback. In this context, a new hybrid algorithm to detect OA and subsequently remove OA from single channel streaming EEG data is proposed here. The algorithm first detects the OA zones using Algebraic approach, and then removes artifact from the detected OA zones using Discrete Wavelet Transform (DWT) decomposition method. De-noising technique is applied only to the OA zone that minimizes interference to neural information outside of OA zone. The microcontroller hardware implemented hybrid OA removal algorithm demonstrated real-time execution with sufficient accuracy in both OA detection and removal. The performance evaluation was carried out qualitatively and quantitatively for 0.5 sec epoch in overlapping manner using time-frequency analysis, mean square coherence, Correlation Coefficient (CC) and Mutual Information statistics. Matlab implementation resulted in average CC of 0.3242 and average MI of 1.0042, while microcontroller implementation resulted in average CC of 0.4033 for all blinks. Successful implementation of OA removal from single channel real-time EEG data using the proposed algorithm shows promise for real-time feedabck applications of wearable EEG devices

    Electroencephalogram Signalling diagnosis using Softcomputing

    Get PDF
    The two most frightening things for the researchers in clinical signal processing and computer aided diagnosis are noise and relativity of human judgment. The researchers made effort to overcome these two challenges by using various soft computing approaches. In this article the present benefits of these approaches in the accomplishment of the analysis of electroencephalogram (EEG) is acknowledge. There is also the presentation of the significance of several trend and prospects of further softcomputing methods that can produce better results in signal processing of EEG. Medical experts apply the different softcomputing techniques for disease diagnoses and decision making systems performed on brain actions and modeling of neural impulses of the human encephalon
    corecore