709 research outputs found

    RIBBONS: Rapid Inpainting Based on Browsing of Neighborhood Statistics

    Full text link
    Image inpainting refers to filling missing places in images using neighboring pixels. It also has many applications in different tasks of image processing. Most of these applications enhance the image quality by significant unwanted changes or even elimination of some existing pixels. These changes require considerable computational complexities which in turn results in remarkable processing time. In this paper we propose a fast inpainting algorithm called RIBBONS based on selection of patches around each missing pixel. This would accelerate the execution speed and the capability of online frame inpainting in video. The applied cost-function is a combination of statistical and spatial features in all neighboring pixels. We evaluate some candidate patches using the proposed cost function and minimize it to achieve the final patch. Experimental results show the higher speed of 'Ribbons' in comparison with previous methods while being comparable in terms of PSNR and SSIM for the images in MISC dataset

    Benchmarking the Robustness of Semantic Segmentation Models

    Full text link
    When designing a semantic segmentation module for a practical application, such as autonomous driving, it is crucial to understand the robustness of the module with respect to a wide range of image corruptions. While there are recent robustness studies for full-image classification, we are the first to present an exhaustive study for semantic segmentation, based on the state-of-the-art model DeepLabv3+. To increase the realism of our study, we utilize almost 400,000 images generated from Cityscapes, PASCAL VOC 2012, and ADE20K. Based on the benchmark study, we gain several new insights. Firstly, contrary to full-image classification, model robustness increases with model performance, in most cases. Secondly, some architecture properties affect robustness significantly, such as a Dense Prediction Cell, which was designed to maximize performance on clean data only.Comment: CVPR 2020 camera read

    MAP-GAN: Unsupervised Learning of Inverse Problems

    Get PDF
    In this paper we outline a novel method for training a generative adversarial network based denoising model from an exclusively corrupted and unpaired dataset of images. Our model can learn without clean data or corrupted image pairs, and instead only requires that the noise distribution is able to be expressed analytically and that the noise at each pixel is independent. We utilize maximum a posteriori estimation as the underlying solution framework, optimizing over the analytically expressed noise generating distribution as the likelihood and employ the GAN as the prior. We then evaluate our method on several popular datasets of varying size and levels of corruption. Further we directly compare the numerical results of our experiments to that of the current state of the art unsupervised denoising model. While our proposed approach\u27s experiments do not achieve a new state of the art, it provides an alternative method to unsupervised denoising and shows strong promise as an area for future research and untapped potential

    Multi-scale Adaptive Fusion Network for Hyperspectral Image Denoising

    Full text link
    Removing the noise and improving the visual quality of hyperspectral images (HSIs) is challenging in academia and industry. Great efforts have been made to leverage local, global or spectral context information for HSI denoising. However, existing methods still have limitations in feature interaction exploitation among multiple scales and rich spectral structure preservation. In view of this, we propose a novel solution to investigate the HSI denoising using a Multi-scale Adaptive Fusion Network (MAFNet), which can learn the complex nonlinear mapping between clean and noisy HSI. Two key components contribute to improving the hyperspectral image denoising: A progressively multiscale information aggregation network and a co-attention fusion module. Specifically, we first generate a set of multiscale images and feed them into a coarse-fusion network to exploit the contextual texture correlation. Thereafter, a fine fusion network is followed to exchange the information across the parallel multiscale subnetworks. Furthermore, we design a co-attention fusion module to adaptively emphasize informative features from different scales, and thereby enhance the discriminative learning capability for denoising. Extensive experiments on synthetic and real HSI datasets demonstrate that the proposed MAFNet has achieved better denoising performance than other state-of-the-art techniques. Our codes are available at \verb'https://github.com/summitgao/MAFNet'.Comment: IEEE JSTASRS 2023, code at: https://github.com/summitgao/MAFNe
    • …
    corecore