448 research outputs found

    Review on Power Line Interference Removal from ECG Signal Using Adaptive and Error Filter

    Get PDF
    An ECG signal is basically an index of the functionality of the heart. For example, a physician can detect arrhythmia by studying abnormalities in the ECG signal. Since very fine features present in an ECG signal may convey important information, it is important to have the signal as clean as possible. Power line interference may be significant in electrocardiography. Often, a proper recording environment is not sufficient to avoid this interference. ECG signals polluted by power line noise of relatively large amplitude were the frequency of power line interference accurately at 50 Hz or 60 Hz, a sharp notch filter would be able to separate and eliminate the noise. The major difficulty is that the frequency can vary about fractions of a Hertz, or even a few Hertz. Two different approaches have been proposed in literature for this purpose notch filters and adaptive interference cancellers. Notch filters reduce the power line interference by suppressing predetermined frequencies. One of the possible alternatives to take frequency variations into account is the use of an external reference power line signal. An ideal EMI filter for ECG should act as a sharp notch filter to eliminate only the undesirable power line interference while automatically adapting itself to variations in the frequency and level of the noise. This technique, available by the use of adaptive filters only, is reported in literature and present serious practical difficulties and is difficult to implement

    A STUDY OF POWER LINE INTERFERENCE CANCELLATION USING IIR, AAPTIVE AND WAVELET FILTERING IN ECG

    Get PDF
    Background: It is essential to reduce these disturbances in ECG signal to improve accuracy and reliability. The bandwidth of the noise overlaps that of wanted signals, so that simple filtering cannot sufficiently enhance the signal to noise ratio. The present paper deals with the digital filtering method to reduce 50 Hz power line noise artifacts in the ECG signal. 4th order Butterworth notch filters(BW=.5 Hz) is used to reduce 50 Hz power line noise interference(PLI) from ECG signals and its performance is compared with Adaptve filters. Method: ECG signal is taken from physionet database. ECG signal (with PLI noise of different frequencies) were processed by Butterworth notch filters of bandwidths of 0.5 Hz. Ringing Artifact is observed in the output. ECG signal (with PLI noise of different frequencies) were processed by Adaptive filters no ringing effect seen. Wavelet filtering applied clean ECG were observed. Result: Performance is compared based on SNR and MSE of Butterworth notch filter and adaptive filters and output of wallet filtering were observed. Conclusion: RLS adaptive filter give better performance as compared to IIR Butterworth and LMS. Clean ECG were seen when filtering using symlet8 wavelet was done

    A novel fixed-point leaky sign regressor algorithm based adaptive noise canceller for PLI cancellation in ECG signals

    Get PDF
    In this paper, a novel fixed-point Leaky Sign Regressor Algorithm (LSRA) based adaptive noise canceller has been employed for the cancellation of 60 Hz Power Line Interference (PLI) from the ElectroCardioGram (ECG) signal. A sufficient condition for the convergence in the mean of the LSRA algorithm is also derived. The fixed-point LSRA-based adaptive noise canceller employed in this work is fully quantized using an in-house quantize function. The most effective number of quantization bits required for the various parameters are found to be 6-bits and are determined through rigorous simulations. The filtered ECG signal free from 60 Hz PLI is successfully recovered using a novel 6-bit fixed-point LSRA-based adaptive noise canceller

    The stationary wavelet transform as an efficient reductor of powerline interference for atrial bipolar electrograms in cardiac electrophysiology

    Full text link
    [EN] Objective :The most relevant source of signal contamination in the cardiac electrophysiology (EP) laboratory is the ubiquitous powerline interference (PLI). To reduce this perturbation, algorithms including common fixed-bandwidth and adaptive-notch filters have been proposed. Although such methods have proven to add artificial fractionation to intra-atrial electrograms (EGMs), they are still frequently used. However, such morphological alteration can conceal the accurate interpretation of EGMs, specially to evaluate the mechanisms supporting atrial fibrillation (AF), which is the most common cardiac arrhythmia. Given the clinical relevance of AF, a novel algorithm aimed at reducing PLI on highly contaminated bipolar EGMs and, simultaneously, preserving their morphology is proposed. Approach: The method is based on the wavelet shrinkage and has been validated through customized indices on a set of synthesized EGMs to accurately quantify the achieved level of PLI reduction and signal morphology alteration. Visual validation of the algorithm¿s performance has also been included for some real EGM excerpts. Main results: The method has outperformed common filtering-based and wavelet-based strategies in the analyzed scenario. Moreover, it possesses advantages such as insensitivity to amplitude and frequency variations in the PLI, and the capability of joint removal of several interferences. Significance: The use of this algorithm in routine cardiac EP studies may enable improved and truthful evaluation of AF mechanisms.Research supported by grants DPI2017-83952-C3 MINECO/AEI/FEDER, UE and SBPLY/17/180501/000411 from Junta de Comunidades de Castilla-La Mancha.Martinez-Iniesta, M.; Ródenas, J.; Rieta, JJ.; Alcaraz, R. (2019). The stationary wavelet transform as an efficient reductor of powerline interference for atrial bipolar electrograms in cardiac electrophysiology. Physiological Measurement. 40(7):1-17. https://doi.org/10.1088/1361-6579/ab2cb8S117407Addison, P. S. (2017). The Illustrated Wavelet Transform Handbook. doi:10.1201/9781315372556Allen, D. P. (2009). A frequency domain Hampel filter for blind rejection of sinusoidal interference from electromyograms. Journal of Neuroscience Methods, 177(2), 303-310. doi:10.1016/j.jneumeth.2008.10.019Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., … Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. doi:10.1016/j.hrthm.2008.10.024Atienza, F., Almendral, J., Moreno, J., Vaidyanathan, R., Talkachou, A., Kalifa, J., … Berenfeld, O. (2006). Activation of Inward Rectifier Potassium Channels Accelerates Atrial Fibrillation in Humans. Circulation, 114(23), 2434-2442. doi:10.1161/circulationaha.106.633735Bahoura, M., & Ezzaidi, H. (2011). FPGA-Implementation of Discrete Wavelet Transform with Application to Signal Denoising. Circuits, Systems, and Signal Processing, 31(3), 987-1015. doi:10.1007/s00034-011-9355-0Baumert, M., Sanders, P., & Ganesan, A. (2016). Quantitative-Electrogram-Based Methods for Guiding Catheter Ablation in Atrial Fibrillation. Proceedings of the IEEE, 104(2), 416-431. doi:10.1109/jproc.2015.2505318Castillo, E., Morales, D. P., García, A., Martínez-Martí, F., Parrilla, L., & Palma, A. J. (2013). Noise Suppression in ECG Signals through Efficient One-Step Wavelet Processing Techniques. Journal of Applied Mathematics, 2013, 1-13. doi:10.1155/2013/763903Chen, S.-W., & Chen, Y.-H. (2015). Hardware Design and Implementation of a Wavelet De-Noising Procedure for Medical Signal Preprocessing. Sensors, 15(10), 26396-26414. doi:10.3390/s151026396El B’charri, O., Latif, R., Elmansouri, K., Abenaou, A., & Jenkal, W. (2017). ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform. BioMedical Engineering OnLine, 16(1). doi:10.1186/s12938-017-0315-1Everett, T. H., Lai-Chow Kok, Vaughn, R. H., Moorman, R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586Ganesan, A. N., Kuklik, P., Lau, D. H., Brooks, A. G., Baumert, M., Lim, W. W., … Sanders, P. (2013). Bipolar Electrogram Shannon Entropy at Sites of Rotational Activation. Circulation: Arrhythmia and Electrophysiology, 6(1), 48-57. doi:10.1161/circep.112.976654Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215GOLDBERGER, J. J. (2017). Substrate Ablation for Treatment of Atrial Fibrillation: Back to Basics. Journal of Cardiovascular Electrophysiology, 28(2), 156-158. doi:10.1111/jce.13149Gutiérrez-Gnecchi, J. A., Morfin-Magaña, R., Lorias-Espinoza, D., Tellez-Anguiano, A. del C., Reyes-Archundia, E., Méndez-Patiño, A., & Castañeda-Miranda, R. (2017). DSP-based arrhythmia classification using wavelet transform and probabilistic neural network. Biomedical Signal Processing and Control, 32, 44-56. doi:10.1016/j.bspc.2016.10.005Hamilton, P. S. (1996). A comparison of adaptive and nonadaptive filters for reduction of power line interference in the ECG. IEEE Transactions on Biomedical Engineering, 43(1), 105-109. doi:10.1109/10.477707Heijman, J., Algalarrondo, V., Voigt, N., Melka, J., Wehrens, X. H. T., Dobrev, D., & Nattel, S. (2015). The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis. Cardiovascular Research, 109(4), 467-479. doi:10.1093/cvr/cvv275Honarbakhsh, S., Schilling, R. J., Orini, M., Providencia, R., Keating, E., Finlay, M., … Hunter, R. J. (2019). Structural remodeling and conduction velocity dynamics in the human left atrium: Relationship with reentrant mechanisms sustaining atrial fibrillation. Heart Rhythm, 16(1), 18-25. doi:10.1016/j.hrthm.2018.07.019Jadidi, A. S., Lehrmann, H., Weber, R., Park, C.-I., & Arentz, T. (2013). Optimizing Signal Acquisition and Recording in an Electrophysiology Laboratory. Cardiac Electrophysiology Clinics, 5(2), 137-142. doi:10.1016/j.ccep.2013.01.005JARMAN, J. W. E., WONG, T., KOJODJOJO, P., SPOHR, H., DAVIES, J. E. R., ROUGHTON, M., … PETERS, N. S. (2014). Organizational Index Mapping to Identify Focal Sources During Persistent Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 25(4), 355-363. doi:10.1111/jce.12352KOTTKAMP, H., BERG, J., BENDER, R., RIEGER, A., & SCHREIBER, D. (2015). Box Isolation of Fibrotic Areas (BIFA): A Patient-Tailored Substrate Modification Approach for Ablation of Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 27(1), 22-30. doi:10.1111/jce.12870Krijthe, B. P., Kunst, A., Benjamin, E. J., Lip, G. Y. H., Franco, O. H., Hofman, A., … Heeringa, J. (2013). Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. European Heart Journal, 34(35), 2746-2751. doi:10.1093/eurheartj/eht280Lau, D. H., Schotten, U., Mahajan, R., Antic, N. A., Hatem, S. N., Pathak, R. K., … Sanders, P. (2015). Novel mechanisms in the pathogenesis of atrial fibrillation: practical applications. European Heart Journal, 37(20), 1573-1581. doi:10.1093/eurheartj/ehv375Lenis, G., Pilia, N., Loewe, A., Schulze, W. H. W., & Dössel, O. (2017). Comparison of Baseline Wander Removal Techniques considering the Preservation of ST Changes in the Ischemic ECG: A Simulation Study. Computational and Mathematical Methods in Medicine, 2017, 1-13. doi:10.1155/2017/9295029Levkov, C., Mihov, G., Ivanov, R., Daskalov, I., Christov, I., & Dotsinsky, I. (2005). Removal of power-line interference from the ECG: a review of the subtraction procedure. BioMedical Engineering OnLine, 4(1). doi:10.1186/1475-925x-4-50Lian, J., Garner, G., Muessig, D., & Lang, V. (2010). A simple method to quantify the morphological similarity between signals. Signal Processing, 90(2), 684-688. doi:10.1016/j.sigpro.2009.07.010Liu, H., Li, Y., Zhou, Y., Jing, X., & Truong, T.-K. (2018). Joint power line interference suppression and ECG signal recovery in transform domains. Biomedical Signal Processing and Control, 44, 58-66. doi:10.1016/j.bspc.2018.04.001Mamun, M., Al-Kadi, M., & Marufuzzaman, M. (2013). Effectiveness of Wavelet Denoising on Electroencephalogram Signals. Journal of Applied Research and Technology, 11(1), 156-160. doi:10.1016/s1665-6423(13)71524-4Martens, S. M. M., Mischi, M., Oei, S. G., & Bergmans, J. W. M. (2006). An Improved Adaptive Power Line Interference Canceller for Electrocardiography. IEEE Transactions on Biomedical Engineering, 53(11), 2220-2231. doi:10.1109/tbme.2006.883631Mart�nez, M., R�denas, J., Alcaraz, R., & Rieta, J. J. (2017). Application of the Stationary Wavelet Transform to Reduce Power-line Interference in Atrial Electrograms. 2017 Computing in Cardiology Conference (CinC). doi:10.22489/cinc.2017.112-049Martínez-Iniesta, M., Ródenas, J., Alcaraz, R., & Rieta, J. J. (2017). Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology. Annals of Biomedical Engineering, 45(8), 1890-1907. doi:10.1007/s10439-017-1832-6Metting van Rijn, A. C., Peper, A., & Grimbergen, C. A. (1990). High-quality recording of bioelectric events. Medical & Biological Engineering & Computing, 28(5), 389-397. doi:10.1007/bf02441961Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., … Ngarmukos, T. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044-2053. doi:10.1016/j.jacc.2003.12.054Naseri, H., & Homaeinezhad, M. R. (2012). Computerized quality assessment of phonocardiogram signal measurement-acquisition parameters. Journal of Medical Engineering & Technology, 36(6), 308-318. doi:10.3109/03091902.2012.684832NG, J., BORODYANSKIY, A. I., CHANG, E. T., VILLUENDAS, R., DIBS, S., KADISH, A. H., & GOLDBERGER, J. J. (2010). Measuring the Complexity of Atrial Fibrillation Electrograms. Journal of Cardiovascular Electrophysiology, 21(6), 649-655. doi:10.1111/j.1540-8167.2009.01695.xNg, J., Sehgal, V., Ng, J. K., Gordon, D., & Goldberger, J. J. (2014). Iterative Method to Detect Atrial Activations and Measure Cycle Length From Electrograms During Atrial Fibrillation. IEEE Transactions on Biomedical Engineering, 61(2), 273-278. doi:10.1109/tbme.2013.2290003Oesterlein, T. G., Lenis, G., Rudolph, D.-T., Luik, A., Verma, B., Schmitt, C., & Dössel, O. (2015). Removing ventricular far-field signals in intracardiac electrograms during stable atrial tachycardia using the periodic component analysis. Journal of Electrocardiology, 48(2), 171-180. doi:10.1016/j.jelectrocard.2014.12.004Platonov, P. G., Corino, V. D. A., Seifert, M., Holmqvist, F., & Sornmo, L. (2014). Atrial fibrillatory rate in the clinical context: natural course and prediction of intervention outcome. Europace, 16(suppl 4), iv110-iv119. doi:10.1093/europace/euu249Poornachandra, S., & Kumaravel, N. (2008). A novel method for the elimination of power line frequency in ECG signal using hyper shrinkage function. Digital Signal Processing, 18(2), 116-126. doi:10.1016/j.dsp.2007.03.011Quintanilla, J. G., Pérez-Villacastín, J., Pérez-Castellano, N., Pandit, S. V., Berenfeld, O., Jalife, J., & Filgueiras-Rama, D. (2016). Mechanistic Approaches to Detect, Target, and Ablate the Drivers of Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 9(1). doi:10.1161/circep.115.002481Ravelli, F., Masè, M., Cristoforetti, A., Marini, M., & Disertori, M. (2014). The logical operator map identifies novel candidate markers for critical sites in patients with atrial fibrillation. Progress in Biophysics and Molecular Biology, 115(2-3), 186-197. doi:10.1016/j.pbiomolbio.2014.07.006Schanze, T. (2017). Removing noise in biomedical signal recordings by singular value decomposition. Current Directions in Biomedical Engineering, 3(2), 253-256. doi:10.1515/cdbme-2017-0052Schotten, U., Dobrev, D., Platonov, P. G., Kottkamp, H., & Hindricks, G. (2016). Current controversies in determining the main mechanisms of atrial fibrillation. Journal of Internal Medicine, 279(5), 428-438. doi:10.1111/joim.12492Singh, B. N., & Tiwari, A. K. (2006). Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Processing, 16(3), 275-287. doi:10.1016/j.dsp.2005.12.003Van Wagoner, D. R., Piccini, J. P., Albert, C. M., Anderson, M. E., Benjamin, E. J., Brundel, B., … Wehrens, X. H. T. (2015). Progress toward the prevention and treatment of atrial fibrillation: A summary of the Heart Rhythm Society Research Forum on the Treatment and Prevention of Atrial Fibrillation, Washington, DC, December 9–10, 2013. Heart Rhythm, 12(1), e5-e29. doi:10.1016/j.hrthm.2014.11.011Venkatachalam, K. L., Herbrandson, J. E., & Asirvatham, S. J. (2011). Signals and Signal Processing for the Electrophysiologist. Circulation: Arrhythmia and Electrophysiology, 4(6), 965-973. doi:10.1161/circep.111.96430

    Detection of Bundle Branch Blocks using Machine Learning Techniques

    Get PDF
    The most effective method used for the diagnosis of heart diseases is the Electrocardiogram (ECG). The shape of the ECG signal and the time interval between its various components gives useful details about any underlying heart disease. Any dysfunction of the heart is called as cardiac arrhythmia. The electrical impulses of the heart are blocked due to the cardiac arrhythmia called Bundle Branch Block (BBB) which can be observed as an irregular ECG wave. The BBB beats can indicate serious heart disease. The precise and quick detection of cardiac arrhythmias from the ECG signal can save lives and can also reduce the diagnostics cost. This study presents a machine learning technique for the automatic detection of BBB. In this method both morphological and statistical features were calculated from the ECG signals available in the standard MIT BIH database to classify them as normal, Left Bundle Branch Block (LBBB) and Right Bundle Branch Block (RBBB). ECG records in the MIT- BIH arrhythmia database containing Normal sinus rhythm, RBBB, and LBBB were used in the study. The suitability of the features extracted was evaluated using three classifiers, support vector machine, k-nearest neighbours and linear discriminant analysis. The accuracy of the technique is highly promising for all the three classifiers with k-nearest neighbours giving the highest accuracy of 98.2%. Since the ECG waveforms of patients with the same cardiac disorder is similar in shape, the proposed method is subject independent. The proposed technique is thus a reliable and simple method involving less computational complexity for the automatic detection of bundle branch block. This system can reduce the effort of cardiologists thereby enabling them to concentrate more on treatment of the patients

    Removal of artifacts from electrocardiogram

    Get PDF
    The electrocardiogram is the recording of the electrical potential of heart versus time. The analysis of ECG signal has great importance in the detection of cardiac abnormalities. The electrocardiographic signals are often contaminated by noise from diverse sources. Noises that commonly disturb the basic electrocardiogram are power line interference, instrumentation noise, external electromagnetic field interference, noise due to random body movements and respirational movements. These noises can be classified according to their frequency content. It is essential to reduce these disturbances in ECG signal to improve accuracy and reliability. Different types of adaptive and non-adaptive digital filters have been proposed to remove these noises. In this thesis, window based FIR filters, adaptive filters and wavelet filter bank are applied to remove the noises. Performances of the filters are compared based on the PSNR values. It is difficult to apply filters with fixed filter coefficients to reduce the instrumentation noise, because the time varying behaviour of this noise is not exactly known. Adaptive filter technique is required to overcome this problem, as the filter coefficients can be varied to track the dynamic variations of the signals. In wavelet transform, a signal is analyzed and expressed as a linear combination of the summation of the product of the wavelet coefficients and mother wavelet. The wavelet decomposition offers an excellent resolution both in time and frequency domain. Better estimation of the amplitudes is also obtained in wavelet based denoising

    Tutorial. Surface EMG detection, conditioning and pre-processing: Best practices

    Get PDF
    This tutorial is aimed primarily to non-engineers, using or planning to use surface electromyography (sEMG) as an assessment tool for muscle evaluation in the prevention, monitoring, assessment and rehabilitation fields. The main purpose is to explain basic concepts related to: (a) signal detection (electrodes, electrode–skin interface, noise, ECG and power line interference), (b) basic signal properties, such as amplitude and bandwidth, (c) parameters of the front-end amplifier (input impedance, noise, CMRR, bandwidth, etc.), (d) techniques for interference and artifact reduction, (e) signal filtering, (f) sampling and (g) A/D conversion, These concepts are addressed and discussed, with examples. The second purpose is to outline best practices and provide general guidelines for proper signal detection, conditioning and A/D conversion, aimed to clinical operators and biomedical engineers. Issues related to the sEMG origin and to electrode size, interelectrode distance and location, have been discussed in a previous tutorial. Issues related to signal processing for information extraction will be discussed in a subsequent tutorial

    Improving Maternal and Fetal Cardiac Monitoring Using Artificial Intelligence

    Get PDF
    Early diagnosis of possible risks in the physiological status of fetus and mother during pregnancy and delivery is critical and can reduce mortality and morbidity. For example, early detection of life-threatening congenital heart disease may increase survival rate and reduce morbidity while allowing parents to make informed decisions. To study cardiac function, a variety of signals are required to be collected. In practice, several heart monitoring methods, such as electrocardiogram (ECG) and photoplethysmography (PPG), are commonly performed. Although there are several methods for monitoring fetal and maternal health, research is currently underway to enhance the mobility, accuracy, automation, and noise resistance of these methods to be used extensively, even at home. Artificial Intelligence (AI) can help to design a precise and convenient monitoring system. To achieve the goals, the following objectives are defined in this research: The first step for a signal acquisition system is to obtain high-quality signals. As the first objective, a signal processing scheme is explored to improve the signal-to-noise ratio (SNR) of signals and extract the desired signal from a noisy one with negative SNR (i.e., power of noise is greater than signal). It is worth mentioning that ECG and PPG signals are sensitive to noise from a variety of sources, increasing the risk of misunderstanding and interfering with the diagnostic process. The noises typically arise from power line interference, white noise, electrode contact noise, muscle contraction, baseline wandering, instrument noise, motion artifacts, electrosurgical noise. Even a slight variation in the obtained ECG waveform can impair the understanding of the patient's heart condition and affect the treatment procedure. Recent solutions, such as adaptive and blind source separation (BSS) algorithms, still have drawbacks, such as the need for noise or desired signal model, tuning and calibration, and inefficiency when dealing with excessively noisy signals. Therefore, the final goal of this step is to develop a robust algorithm that can estimate noise, even when SNR is negative, using the BSS method and remove it based on an adaptive filter. The second objective is defined for monitoring maternal and fetal ECG. Previous methods that were non-invasive used maternal abdominal ECG (MECG) for extracting fetal ECG (FECG). These methods need to be calibrated to generalize well. In other words, for each new subject, a calibration with a trustable device is required, which makes it difficult and time-consuming. The calibration is also susceptible to errors. We explore deep learning (DL) models for domain mapping, such as Cycle-Consistent Adversarial Networks, to map MECG to fetal ECG (FECG) and vice versa. The advantages of the proposed DL method over state-of-the-art approaches, such as adaptive filters or blind source separation, are that the proposed method is generalized well on unseen subjects. Moreover, it does not need calibration and is not sensitive to the heart rate variability of mother and fetal; it can also handle low signal-to-noise ratio (SNR) conditions. Thirdly, AI-based system that can measure continuous systolic blood pressure (SBP) and diastolic blood pressure (DBP) with minimum electrode requirements is explored. The most common method of measuring blood pressure is using cuff-based equipment, which cannot monitor blood pressure continuously, requires calibration, and is difficult to use. Other solutions use a synchronized ECG and PPG combination, which is still inconvenient and challenging to synchronize. The proposed method overcomes those issues and only uses PPG signal, comparing to other solutions. Using only PPG for blood pressure is more convenient since it is only one electrode on the finger where its acquisition is more resilient against error due to movement. The fourth objective is to detect anomalies on FECG data. The requirement of thousands of manually annotated samples is a concern for state-of-the-art detection systems, especially for fetal ECG (FECG), where there are few publicly available FECG datasets annotated for each FECG beat. Therefore, we will utilize active learning and transfer-learning concept to train a FECG anomaly detection system with the least training samples and high accuracy. In this part, a model is trained for detecting ECG anomalies in adults. Later this model is trained to detect anomalies on FECG. We only select more influential samples from the training set for training, which leads to training with the least effort. Because of physician shortages and rural geography, pregnant women's ability to get prenatal care might be improved through remote monitoring, especially when access to prenatal care is limited. Increased compliance with prenatal treatment and linked care amongst various providers are two possible benefits of remote monitoring. If recorded signals are transmitted correctly, maternal and fetal remote monitoring can be effective. Therefore, the last objective is to design a compression algorithm that can compress signals (like ECG) with a higher ratio than state-of-the-art and perform decompression fast without distortion. The proposed compression is fast thanks to the time domain B-Spline approach, and compressed data can be used for visualization and monitoring without decompression owing to the B-spline properties. Moreover, the stochastic optimization is designed to retain the signal quality and does not distort signal for diagnosis purposes while having a high compression ratio. In summary, components for creating an end-to-end system for day-to-day maternal and fetal cardiac monitoring can be envisioned as a mix of all tasks listed above. PPG and ECG recorded from the mother can be denoised using deconvolution strategy. Then, compression can be employed for transmitting signal. The trained CycleGAN model can be used for extracting FECG from MECG. Then, trained model using active transfer learning can detect anomaly on both MECG and FECG. Simultaneously, maternal BP is retrieved from the PPG signal. This information can be used for monitoring the cardiac status of mother and fetus, and also can be used for filling reports such as partogram

    Preserving Useful Info While Reducing Noise of Physiological Signals by Using Wavelet Analysis

    Get PDF
    Wavelet analysis is a powerful mathematical tool commonly used in signal processing applications, such as image analysis, image compression, image edge detection, and communications systems. Unlike traditional Fourier analysis, wavelet analysis allows for multiple resolutions in the time and frequency domains; it can preserve time information while decomposing a signal spectrum over a range of frequencies. Wavelet analysis is also more suitable for detecting numerous transitory characteristics, such as drift, trends, abrupt changes, and beginnings and ends of events. These characteristics are often the most important and critical part of some non-stationary signals, such as physiological signals. The thesis focuses on a formal analysis of using wavelet transform for noise filtering. The performance of the wavelet analysis is simulated on a variety of patient samples of Arterial Blood Pressure (ABP 14 sets) and Electrocardiography (ECG 14 sets) from the Mayo Clinic at Jacksonville. The performance of the Fourier analysis is also simulated on the same patient samples for comparison purpose. Additive white Gaussian noise (AWGN) is generated and added to the samples for studying the AWGN effect on physiological signals and both analysis methods. The algorithms of finding the optimal level of approximation and calculating the threshold value of filtering are created and different ways of adding the details back to the approximation are studied. Wavelet analysis has the ability to add or remove certain frequency bands with threshold selectivity from the original signal. It can effectively preserve the spikes and humps, which are the information that is intended to be kept, while de-noising physiological signals. The simulation results show that the wavelet analysis has a better performance than Fourier analysis in preserving the transitory information of the physiological signals
    corecore