20 research outputs found

    Fast emergency paths schema to overcome transient link failures in ospf routing

    Full text link
    A reliable network infrastructure must be able to sustain traffic flows, even when a failure occurs and changes the network topology. During the occurrence of a failure, routing protocols, like OSPF, take from hundreds of milliseconds to various seconds in order to converge. During this convergence period, packets might traverse a longer path or even a loop. An even worse transient behaviour is that packets are dropped even though destinations are reachable. In this context, this paper describes a proactive fast rerouting approach, named Fast Emergency Paths Schema (FEP-S), to overcome problems originating from transient link failures in OSPF routing. Extensive experiments were done using several network topologies with different dimensionality degrees. Results show that the recovery paths, obtained by FEPS, are shorter than those from other rerouting approaches and can improve the network reliability by reducing the packet loss rate during the routing protocols convergence caused by a failure.Comment: 18 page

    Smart Sensor Technologies for IoT

    Get PDF
    The recent development in wireless networks and devices has led to novel services that will utilize wireless communication on a new level. Much effort and resources have been dedicated to establishing new communication networks that will support machine-to-machine communication and the Internet of Things (IoT). In these systems, various smart and sensory devices are deployed and connected, enabling large amounts of data to be streamed. Smart services represent new trends in mobile services, i.e., a completely new spectrum of context-aware, personalized, and intelligent services and applications. A variety of existing services utilize information about the position of the user or mobile device. The position of mobile devices is often achieved using the Global Navigation Satellite System (GNSS) chips that are integrated into all modern mobile devices (smartphones). However, GNSS is not always a reliable source of position estimates due to multipath propagation and signal blockage. Moreover, integrating GNSS chips into all devices might have a negative impact on the battery life of future IoT applications. Therefore, alternative solutions to position estimation should be investigated and implemented in IoT applications. This Special Issue, “Smart Sensor Technologies for IoT” aims to report on some of the recent research efforts on this increasingly important topic. The twelve accepted papers in this issue cover various aspects of Smart Sensor Technologies for IoT

    Foutbestendige toekomstige internetarchitecturen

    Get PDF

    Resilient routing in the internet

    Get PDF
    Although it is widely known that the Internet is not prone to random failures, unplanned failures due to attacks can be very damaging. This prevents many organisations from deploying beneficial operations through the Internet. In general, the data is delivered from a source to a destination via a series of routers (i.e routing path). These routers employ routing protocols to compute best paths based on routing information they possess. However, when a failure occurs, the routers must re-construct their routing tables, which may take several seconds to complete. Evidently, most losses occur during this period. IP Fast Re-Route (IPFRR), Multi-Topology (MT) routing, and overlays are examples of solutions proposed to handle network failures. These techniques alleviate the packet losses to different extents, yet none have provided optimal solutions. This thesis focuses on identifying the fundamental routing problem due to convergence process. It describes the mechanisms of each existing technique as well as its pros and cons. Furthermore, it presents new techniques for fast re-routing as follows. Enhanced Loop-Free Alternates (E-LFAs) increase the repair coverage of the existing techniques, Loop-Free Alternates (LFAs). In addition, two techniques namely, Full Fast Failure Recovery (F3R) and fast re-route using Alternate Next Hop Counters (ANHC), offer full protection against any single link failures. Nevertheless, the former technique requires significantly higher computational overheads and incurs longer backup routes. Both techniques are proved to be complete and correct while ANHC neither requires any major modifications to the traditional routing paradigm nor incurs significant overheads. Furthermore, in the presence of failures, ANHC does not jeopardise other operable parts of the network. As emerging applications require higher reliability, multiple failures scenarios cannot be ignored. Most existing fast re-route techniques are able to handle only single or dual failures cases. This thesis provides an insight on a novel approach known as Packet Re-cycling (PR), which is capable of handling any number of failures in an oriented network. That is, packets can be forwarded successfully as long as a path between a source and a destination is available. Since the Internet-based services and applications continue to advance, improving the network resilience will be a challenging research topic for the decades to come

    Resilient and Scalable Forwarding for Software-Defined Networks with P4-Programmable Switches

    Get PDF
    Traditional networking devices support only fixed features and limited configurability. Network softwarization leverages programmable software and hardware platforms to remove those limitations. In this context the concept of programmable data planes allows directly to program the packet processing pipeline of networking devices and create custom control plane algorithms. This flexibility enables the design of novel networking mechanisms where the status quo struggles to meet high demands of next-generation networks like 5G, Internet of Things, cloud computing, and industry 4.0. P4 is the most popular technology to implement programmable data planes. However, programmable data planes, and in particular, the P4 technology, emerged only recently. Thus, P4 support for some well-established networking concepts is still lacking and several issues remain unsolved due to the different characteristics of programmable data planes in comparison to traditional networking. The research of this thesis focuses on two open issues of programmable data planes. First, it develops resilient and efficient forwarding mechanisms for the P4 data plane as there are no satisfying state of the art best practices yet. Second, it enables BIER in high-performance P4 data planes. BIER is a novel, scalable, and efficient transport mechanism for IP multicast traffic which has only very limited support of high-performance forwarding platforms yet. The main results of this thesis are published as 8 peer-reviewed and one post-publication peer-reviewed publication. The results cover the development of suitable resilience mechanisms for P4 data planes, the development and implementation of resilient BIER forwarding in P4, and the extensive evaluations of all developed and implemented mechanisms. Furthermore, the results contain a comprehensive P4 literature study. Two more peer-reviewed papers contain additional content that is not directly related to the main results. They implement congestion avoidance mechanisms in P4 and develop a scheduling concept to find cost-optimized load schedules based on day-ahead forecasts

    Performance Evaluation of MPLS in a Virtualized Service Provider Core (with/without Class of Service)

    Get PDF
    The last decade has witnessed a major change in the types of traffic scaling the Internet. With the development of real-time applications several challenges were faced within traditional IP networks. Some of these challenges are delay, increased costs faced by the service provider and customer, limited scalability, separate infrastructure costs and high administrative overheads to manage large networks etc. To combat these challenges, researchers have steered towards finding alternate solutions. Over the recent years, we have seen an introduction of a number of virtualized platforms and solutions being offered in the networking industry. Virtual load balancers, virtual firewalls, virtual routers, virtual intrusion detection and preventions systems are just a few examples within the Network Function Virtualization world! Service Providers are trying to find solutions where they could reduce operational expenses while at the same time meet the growing bandwidth demands of their customers. The main aim of this thesis is to evaluate the performance of voice, data and video traffic in a virtualized service provider core. Observations are made on how these traffic types perform on congested vs uncongested links and how Quality of Service treats traffic in a virtualized Service Provider Core using Round Trip Time as a performance metric. This thesis also tries to find if resiliency features such as Fast Reroute provide an additional advantage in failover scenarios within virtualized service provider cores. Juniper Networks vSRX are used to replicate virtual routers in a virtualized service provider core. Twenty-Four tests are carried out to gain a better understanding of how real-time applications and resiliency methods perform in virtualized networks. It is observed that a trade-off exists when introducing QoS on congested primary and secondary label switched paths. What can be observed thru the graphs is having Quality of Service enabled drops more packets however gives us the advantage of lower Round Trip Time for in-profile traffic. On the hand, having Quality of Service disabled, permits more traffic but leads to bandwidth contention between the three traffic classes leading to higher Round-Trip Times. The true benefit of QoS is seen in traffic congestion scenarios. The test bed built in this thesis, shows us that Fast Reroute does not add a significant benefit to aid in the reduction of packet loss during failover scenarios between primary and secondary paths. However, in certain scenarios fast reroute does seem to reduce packet loss specifically for data traffic

    Scalability and Resilience Analysis of Software-Defined Networking

    Get PDF
    Software-defined Networking (SDN) ist eine moderne Architektur für Kommunikationsnetze, welche entwickelt wurde, um die Einführung von neuen Diensten und Funktionen in Netzwerke zu erleichtern. Durch eine Trennung der Weiterleitungs- und Kontrollfunktionen sind nur wenige Kontrollelemente mit Software-Updates zu versehen, um Veränderungen am Netz vornehmen zu können. Allerdings wirft die Netzstrukturierung von SDN neue Fragen bezüglich Skalierbarkeit und Ausfallsicherheit auf, welche in dezentralen Netzstrukturen nicht auftreten. In dieser Arbeit befassen wir uns mit Fragestellungen zu Skalierbarkeit und Ausfallsicherheit in Bezug auf Unicast- und Multicast-Verkehr in SDN-basierten Netzen. Wir führen eine Komprimierungstechnik für Routingtabellen ein, welche die Skalierungsproblematik aktueller SDN Weiterleitungsgeräte verbessern soll und ermitteln ihre Effizienz in einer Leistungsbewertung. Außerdem diskutieren wir unterschiedliche Methoden, um die Ausfallsicherheit in SDN zu verbessern. Wir analysieren sie auf öffentlich zugänglichen Netzwerken und benennen Vor- und Nachteile der Ansätze. Abschließend schlagen wir eine skalierbare und ausfallsichere Architektur für Multicast-basiertes SDN vor. Wir untersuchen ihre Effizienz in einer Leistungsbewertung und zeigen ihre Umsetzbarkeit mithilfe eines Prototypen.Software-Defined Networking (SDN) is a novel architecture for communication networks that has been developed to ease the introduction of new network services and functions. It leverages the separation of the data plane and the control plane to allow network services to be deployed solely in software. Although SDN provides great flexibility, the applicability of SDN in communication networks raises several questions with regard to scalability and resilience against network failures. These concerns are not prevalent in current decentralized network architectures. In this thesis, we address scalability and resilience issues with regard to unicast and multicast traffic for SDN-based networks. We propose a new compression method for inter-domain routing tables to address hardware limitations of current SDN switches and analyze its effectiveness. We propose various resilience methods for SDN and identify their key performance indicators in the context of carrier-grade and datacenter networks. We discuss the advantages and disadvantages of these proposals and their appropriate use cases. Finally, we propose a scalable and resilient software-defined multicast architecture. We study the effectiveness of our approach and show its feasibility using a prototype implementation

    Products and Services

    Get PDF
    Today’s global economy offers more opportunities, but is also more complex and competitive than ever before. This fact leads to a wide range of research activity in different fields of interest, especially in the so-called high-tech sectors. This book is a result of widespread research and development activity from many researchers worldwide, covering the aspects of development activities in general, as well as various aspects of the practical application of knowledge
    corecore