1,649 research outputs found

    Exploring Marine Environments for the Identification of Extremophiles and Their Enzymes for Sustainable and Green Bioprocesses

    Get PDF
    Sea environments harbor a wide variety of life forms that have adapted to live in hard and sometimes extreme conditions. Among the marine living organisms, extremophiles represent a group of microorganisms that attract increasing interest in relation to their ability to produce an array of molecules that enable them to thrive in almost every marine environment. Extremophiles can be found in virtually every extreme environment on Earth, since they can tolerate very harsh environmental conditions in terms of temperature, pH, pressure, radiation, etc. Marine extremophiles are the focus of growing interest in relation to their ability to produce biotechnologically useful enzymes, the so-called extremozymes. Thanks to their resistance to temperature, pH, salt, and pollutants, marine extremozymes are promising biocatalysts for new and sustainable industrial processes, thus representing an opportunity for several biotechnological applications. Since the marine microbioma, i.e., the complex of microorganisms living in sea environments, is still largely unexplored finding new species is a central issue for green biotechnology. Here we described the main marine environments where extremophiles can be found, some existing or potential biotechnological applications of marine extremozymes for biofuels production and bioremediation, and some possible approaches for the search of new biotechnologically useful species from marine environments

    Contribution of remote sensing technologies to a holistic coastal and marine environmental management framework: a review

    Get PDF
    Coastal and marine management require the evaluation of multiple environmental threats and issues. However, there are gaps in the necessary data and poor access or dissemination of existing data in many countries around the world. This research identifies how remote sensing can contribute to filling these gaps so that environmental agencies, such as the United Nations Environmental Programme, European Environmental Agency, and International Union for Conservation of Nature, can better implement environmental directives in a cost-e ective manner. Remote sensing (RS) techniques generally allow for uniform data collection, with common acquisition and reporting methods, across large areas. Furthermore, these datasets are sometimes open-source, mainly when governments finance satellite missions. Some of these data can be used in holistic, coastal and marine environmental management frameworks, such as the DAPSI(W)R(M) framework (Drivers–Activities–Pressures–State changes–Impacts (on Welfare)–Responses (as Measures), an updated version of Drivers–Pressures–State–Impact–Responses. The framework is a useful and holistic problem-structuring framework that can be used to assess the causes, consequences, and responses to change in the marine environment. Six broad classifications of remote data collection technologies are reviewed for their potential contribution to integrated marine management, including Satellite-based Remote Sensing, Aerial Remote Sensing, Unmanned Aerial Vehicles, Unmanned Surface Vehicles, Unmanned Underwater Vehicles, and Static Sensors. A significant outcome of this study is practical inputs into each component of the DAPSI(W)R(M) framework. The RS applications are not expected to be all-inclusive; rather, they provide insight into the current use of the framework as a foundation for developing further holistic resource technologies for management strategies in the future. A significant outcome of this research will deliver practical insights for integrated coastal and marine management and demonstrate the usefulness of RS to support the implementation of environmental goals, descriptors, targets, and policies, such as theWater Framework Directive, Marine Strategy Framework Directive, Ocean Health Index, and United Nations Sustainable Development Goals. Additionally, the opportunities and challenges of these technologies are discussed.Murray Foundation: 25.26022020info:eu-repo/semantics/publishedVersio

    Spatiotemporal Features of Coastal Waters in Southwest Finland

    Get PDF
    In coastal waters, physico-chemical and biological properties and constituents vary at different time scales. In the study area of this thesis, within the Archipelago Sea in the northern Baltic Sea, seasonal cycles of light and temperature set preconditions for intra-annual variations, but developments at other temporal scales occur as well. Weather-induced runoffs and currents may alter water properties over the short term, and the consequences over time of eutrophication and global changes are to a degree unpredictable. The dynamic characteristics of northern Baltic Sea waters are further diversified at the archipelago coasts. Water properties may differ in adjacent basins, which are separated by island and underwater thresholds limiting water exchange, making the area not only a mosaic of islands but also one of water masses. Long-term monitoring and in situ observations provide an essential data reserve for coastal management and research. Since the seasonal amplitudes of water properties are so high, inter-annual comparisons of water-quality variables have to be based on observations sampled at the same time each year. In this thesis I compare areas by their temporal characteristics, using both inter-annual and seasonal data. After comparing spatial differences in seasonal cycles, I conclude that spatial comparisons and temporal generalizations have to be made with caution. In classifying areas by the state of their waters, the results may be biased even if the sampling is annually simultaneous, since the dynamics of water properties may vary according to the area. The most comprehensive view of the spatiotemporal dynamics of water properties would be achieved by means of comparisons with data consisting of multiple annual samples. For practical reasons, this cannot be achieved with conventional in situ sampling. A holistic understanding of the spatiotemporal features of the water properties of the Archipelago Sea will have to be based on the application of multiple methods, complementing each other’s spatial and temporal coverage. The integration of multi-source observational data and time-series analysis may be methodologically challenging, but it will yield new information as to the spatiotemporal regime of the Archipelago Sea.Rannikkovesien fysikaalis-kemialliset ja biologiset ominaisuudet vaihtelevat eri ajanjaksoissa. Saaristomerellä veden ominaisuuksia ja aineiden kiertoa säätelee ennen kaikkea valon, lämpötilan ja biologisen toiminnan voimakas vuodenaikaisuus. Sää vaikuttaa lyhytaikaisesti jokien valumiin ja meren virtauksiin, toisaalta ravinteiden ylimäärä on johtanut vedenlaadun pitkäaikaismuutoksiin ja hitaasti etenevät globaalimuutokset vaikuttavat osin tuntemattomalla tavalla. Saaristomeren vesien dynamiikkaan vaikuttavat lisäksivedenalaiset kynnykset ja saaret, jotka ohjaavat vesien kulkeutumista. Saaristomeri ei siis ole pelkästään saarten, vaan myös altaiden ja vesimassojen mosaiikki, jossa harva veden ominaisuus on pysyvä. Vesien tilan pitkäaikaisseuranta tarjoaa taustatietoa monille tutkimusaloille sekä välttämättömän tietovarannon vesien hoidon ohjaamiseksi. Pitkäaikaismuutosten seuraaminen edellyttää vertailukelpoisia, vuosittain samaan aikaan kerättyjä havaintoja. Lyhyeen vuosittaiseen jaksoon perustuva otanta voi kuitenkin johtaa erilaisiin johtopäätöksiin kuin siinä tapauksessa, että alueita vertailtaisiin niiden koko vuoden kehityksen perusteella. Vuodenaikaiskierrossa voi tapahtua muutoksia mm. ajoituksessa ja vaihteluväleissä, eikä näitä muutoksia pystytä seuraamaan muuten kuin ajallisesti riittävän tiheällä näytteenotolla. Väitöskirjani keskeisin kysymys on, miten yleisimpien meriveden ominaisuuksien vuodenaikaiskierrot vertautuvat alueellisesti. Esimerkiksi pintaveden lämpötilan vuoden kierto toistuu samankaltaisena sijainnista riippumatta, sameuden vuodenkiertoon vaikuttavat puolestaan useat tekijät, joiden merkitys vaihtelee alueittain eri aikoina. Yleistyksien tekemisessä on siis oltava varovainen, kun veden ominaisuuksia kuvaavia havaintotietoja käytetään päätöksenteon tai tutkimuksen taustatietoina. Alueiden luokittelu koko vuodenaikaiskehityksen mukaan on osoittautunut haastavaksi tehtäväksi, sillä se mm. edellyttää useiden, toisiaan alueellisesti ja ajallisesti täydentävien aineistolähteiden käyttöä. Vuodenaikaisvaihteluiden kehityskulkujen alueellinen vertailu avaa kuitenkin uusia näkökulmia rannikkovesitutkimukseen, ja se saattaa auttaa selvittämään Saaristomeren vedenlaatuun vaikuttavien tekijöiden syy-seuraus suhteita.Siirretty Doriast

    The increasing importance of satellite observations to assess the ocean carbon sink and ocean acidification

    Get PDF
    This is the author accepted manuscript. The final version is available on open access from Elsevier via the DOI in this recordData availability Data will be made available on request.The strong control that the emissions of carbon dioxide (CO2) have over Earth's climate identifies the need for accurate quantification of the emitted CO2 and its redistribution within the Earth system. The ocean annually absorbs more than a quarter of all CO2 emissions and this absorption is fundamentally altering the ocean chemistry. The ocean thus provides a fundamental component and powerful constraint within global carbon assessments used to guide policy action for reducing emissions. These carbon assessments rely heavily on satellite observations, but their inclusion is often invisible or opaque to policy. One reason is that satellite observations are rarely used exclusively, but often in conjunction with other types of observations, thereby complementing and expanding their usability yet losing their visibility. This exploitation of satellite observations led by the satellite and ocean carbon scientific communities is based on exciting developments in satellite science that have broadened the suite of environmental data that can now reliably be observed from space. However, the full potential of satellite observations to expand the scientific knowledge on critical processes such as the atmosphere-ocean exchange of CO2 and ocean acidification, including its impact on ocean health, remains largely unexplored. There is clear potential to begin using these observation-based approaches for directly guiding ocean management and conservation decisions, in particular in regions where in situ data collection is more difficult, and interest in them is growing within the environmental policy communities. We review these developments, identify new opportunities and scientific priorities, and identify that the formation of an international advisory group could accelerate policy relevant advancements within both the ocean carbon and satellite communities. Some barriers to understanding exist but these should not stop the exploitation and the full visibility of satellite observations to policy makers and users, so these observations can fulfil their full potential and recognition for supporting society.European Space Agenc

    Global in situ observations of essential climate and ocean variables at the air–sea interface

    Get PDF
    The air–sea interface is a key gateway in the Earth system. It is where the atmosphere sets the ocean in motion, climate/weather-relevant air–sea processes occur, and pollutants (i.e., plastic, anthropogenic carbon dioxide, radioactive/chemical waste) enter the sea. Hence, accurate estimates and forecasts of physical and biogeochemical processes at this interface are critical for sustainable blue economy planning, growth, and disaster mitigation. Such estimates and forecasts rely on accurate and integrated in situ and satellite surface observations. High-impact uses of ocean surface observations of essential ocean/climate variables (EOVs/ECVs) include (1) assimilation into/validation of weather, ocean, and climate forecast models to improve their skill, impact, and value; (2) ocean physics studies (i.e., heat, momentum, freshwater, and biogeochemical air–sea fluxes) to further our understanding and parameterization of air–sea processes; and (3) calibration and validation of satellite ocean products (i.e., currents, temperature, salinity, sea level, ocean color, wind, and waves). We review strengths and limitations, impacts, and sustainability of in situ ocean surface observations of several ECVs and EOVs. We draw a 10-year vision of the global ocean surface observing network for improved synergy and integration with other observing systems (e.g., satellites), for modeling/forecast efforts, and for a better ocean observing governance. The context is both the applications listed above and the guidelines of frameworks such as the Global Ocean Observing System (GOOS) and Global Climate Observing System (GCOS) (both co-sponsored by the Intergovernmental Oceanographic Commission of UNESCO, IOC–UNESCO; the World Meteorological Organization, WMO; the United Nations Environment Programme, UNEP; and the International Science Council, ISC). Networks of multiparametric platforms, such as the global drifter array, offer opportunities for new and improved in situ observations. Advances in sensor technology (e.g., low-cost wave sensors), high-throughput communications, evolving cyberinfrastructures, and data information systems with potential to improve the scope, efficiency, integration, and sustainability of the ocean surface observing system are explored

    Applications of Microwaves to Remote Sensing of Terrain

    Get PDF
    A survey and study was conducted to define the role that microwaves may play in the measurement of a variety of terrain-related parameters. The survey consisted of discussions with many users and researchers in the field of remote sensing. In addition, a survey questionnaire was prepared and replies were solicited from these and other users and researchers. The results of the survey, and associated bibliography, were studied and conclusions were drawn as to the usefulness of radiometric systems for remote sensing of terrain

    Report of the SNOMS Project 2006 to 2012, SNOMS SWIRE NOCS Ocean Monitoring System. Part 1: Narrative description

    No full text
    The ocean plays a major role in controlling the concentration of carbon dioxide (CO2) in the atmosphere. Increasing concentrations of CO2 in the atmosphere are a threat to the stability of the earth’s climate. A better understanding of the controlling role of the ocean will improve predictions of likely future changes in climate and the impact of the uptake of CO2 itself on marine eco-systems caused by the associated acidification of the ocean waters. The SNOMS Project (SWIRE NOCS Ocean Monitoring System) is a ground breaking joint research project supported by the Swire Group Trust, the Swire Educational Trust, the China Navigation Company (CNCo) and the Natural Environment Research Council. It collects high quality data on concentrations of CO2 in the surface layer of the ocean. It contributes to the international effort to better quantify (and understand the driving processes controlling) the exchanges of CO2 between the ocean and the atmosphere. In 2006 and 2007 a system that could be used on a commercial ship to provide data over periods of several months with only limited maintenance by the ships crew was designed and assembled by NOCS. The system was fitted to the CNCo ship the MV Pacific Celebes in May 2007. The onboard system was supported by web pages that monitored the progress of the ship and the functioning of the data collection system. To support the flow of data from the ship to the archiving of the data at the Carbon Dioxide Information Analysis Center (CDIAC in the USA) data processing procedures were developed for the quality control and systematic handling of the data. Data from samples of seawater collected by the ships crew and analysed in NOC (730 samples) have been used to confirm the consistency of the data from the automated measurement system on the ship. To examine the data collected between 2007 and 2012 the movements of the ship are divided into 16 voyages. Initially The Celebes traded on a route circum-navigating the globe via the Panama and Suez Canals. In 2009 the route shifted to one between Australia and New Zealand to USA and Canada. Analysis of the data is an on going process. It has demonstrated that the system produces reliable data. Data are capable of improving existing estimates of seasonal variability. The work has improved knowledge of gas exchange processes. Data from the crew-collected-samples are helping improve our ability to estimate alkalinity in different areas. This helps with the study of ocean acidification. Data from the 9 round trips in the Pacific are currently being examined along with data made available by the NOAA-PMEL laboratory forming time series from 2004 to 2012. The data from the Pacific route are of considerable interest. One reason is that the data monitors variations in the fluxes of CO2 associated with the current that flows westwards along the equator. This is one of the major natural sources of CO2 from the ocean into the atmosphere

    Book of Abstracts & Lead Articles The Second International Symposium Remote Sensing for Ecosystem Analysis and Fisheries

    Get PDF
    SAFARI (Societal Applications in Fisheries and Aquaculture using Remotely-Sensed Imagery) is an initiative which provides a forum for coordination, at the international level, of activities in global fisheries research and management. The forum is open to all interested parties, including policy makers, research scientists, government managers, and those involved in the fishing industries. SAFARI organizes international workshops and symposia as a platform to discuss the latest research in Earth observation and fisheries management, information sessions aimed at the fisheries industry, government officials and resource managers, representation at policy meetings, and producing publications relevant to the activities. SAFARI gains worldwide attention through collaboration with other international networks, such as ChloroGIN (Chlorophyll Global Integrated Network), IOCCG (International Ocean-Colour Coordinating Group), POGO (Partnership for Observation of the Global Oceans) and the oceans and society: Blue Planet Initiative of the intergovernmental organization, the Group on Earth Observations (GEO)

    Satellite Salinity Observing System: Recent Discoveries and the Way Forward

    Get PDF
    Advances in L-band microwave satellite radiometry in the past decade, pioneered by ESA’s SMOS and NASA’s Aquarius and SMAP missions, have demonstrated an unprecedented capability to observe global sea surface salinity (SSS) from space. Measurements from these missions are the only means to probe the very-near surface salinity (top cm), providing a unique monitoring capability for the interfacial exchanges of water between the atmosphere and the upper-ocean, and delivering a wealth of information on various salinity processes in the ocean, linkages with the climate and water cycle, including land-sea connections, and providing constraints for ocean prediction models. The satellite SSS data are complimentary to the existing in situ systems such as Argo that provide accurate depiction of large-scale salinity variability in the open ocean but under-sample mesoscale variability, coastal oceans and marginal seas, and energetic regions such as boundary currents and fronts. In particular, salinity remote sensing has proven valuable to systematically monitor the open oceans as well as coastal regions up to approximately 40 km from the coasts. This is critical to addressing societally relevant topics, such as land-sea linkages, coastal-open ocean exchanges, research in the carbon cycle, near-surface mixing, and air-sea exchange of gas and mass. In this paper, we provide a community perspective on the major achievements of satellite SSS for the aforementioned topics, the unique capability of satellite salinity observing system and its complementarity with other platforms, uncertainty characteristics of satellite SSS, and measurement versus sampling errors in relation to in situ salinity measurements. We also discuss the need for technological innovations to improve the accuracy, resolution, and coverage of satellite SSS, and the way forward to both continue and enhance salinity remote sensing as part of the integrated Earth Observing System in order to address societal needs
    corecore