270 research outputs found

    A Survey on Hybrid Techniques Using SVM

    Get PDF
    Support Vector Machines (SVM) with linear or nonlinear kernels has become one of the most promising learning algorithms for classification as well as for regression. All the multilayer perceptron (MLP),Radial Basic Function(RBF) and Learning Polynomials are also worked efficiently with SVM. SVM is basically derived from statistical Learning Theory and it is very powerful statistical tool. The basic principal for the SVM is structural risk minimization and closely related to regularization theory. SVM is a group of supervised learning techniques or methods, which is used to do for classification or regression. In this paper discussed the importance of Support Vector Machines in various areas. This paper discussing the efficiency of SVM with the combination of other classification techniques

    Context-dependent fusion with application to landmine detection.

    Get PDF
    Traditional machine learning and pattern recognition systems use a feature descriptor to describe the sensor data and a particular classifier (also called expert or learner ) to determine the true class of a given pattern. However, for complex detection and classification problems, involving data with large intra-class variations and noisy inputs, no single source of information can provide a satisfactory solution. As a result, combination of multiple classifiers is playing an increasing role in solving these complex pattern recognition problems, and has proven to be viable alternative to using a single classifier. In this thesis we introduce a new Context-Dependent Fusion (CDF) approach, We use this method to fuse multiple algorithms which use different types of features and different classification methods on multiple sensor data. The proposed approach is motivated by the observation that there is no single algorithm that can consistently outperform all other algorithms. In fact, the relative performance of different algorithms can vary significantly depending on several factions such as extracted features, and characteristics of the target class. The CDF method is a local approach that adapts the fusion method to different regions of the feature space. The goal is to take advantages of the strengths of few algorithms in different regions of the feature space without being affected by the weaknesses of the other algorithms and also avoiding the loss of potentially valuable information provided by few weak classifiers by considering their output as well. The proposed fusion has three main interacting components. The first component, called Context Extraction, partitions the composite feature space into groups of similar signatures, or contexts. Then, the second component assigns an aggregation weight to each detector\u27s decision in each context based on its relative performance within the context. The third component combines the multiple decisions, using the learned weights, to make a final decision. For Context Extraction component, a novel algorithm that performs clustering and feature discrimination is used to cluster the composite feature space and identify the relevant features for each cluster. For the fusion component, six different methods were proposed and investigated. The proposed approached were applied to the problem of landmine detection. Detection and removal of landmines is a serious problem affecting civilians and soldiers worldwide. Several detection algorithms on landmine have been proposed. Extensive testing of these methods has shown that the relative performance of different detectors can vary significantly depending on the mine type, geographical site, soil and weather conditions, and burial depth, etc. Therefore, multi-algorithm, and multi-sensor fusion is a critical component in land mine detection. Results on large and diverse real data collections show that the proposed method can identify meaningful and coherent clusters and that different expert algorithms can be identified for the different contexts. Our experiments have also indicated that the context-dependent fusion outperforms all individual detectors and several global fusion methods

    Methods for fast and reliable clustering

    Get PDF

    Clustering algorithm for D2D communication in next generation cellular networks : thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering, Massey University, Auckland, New Zealand

    Get PDF
    Next generation cellular networks will support many complex services for smartphones, vehicles, and other devices. To accommodate such services, cellular networks need to go beyond the capabilities of their previous generations. Device-to-Device communication (D2D) is a key technology that can help fulfil some of the requirements of future networks. The telecommunication industry expects a significant increase in the density of mobile devices which puts more pressure on centralized schemes and poses risk in terms of outages, poor spectral efficiencies, and low data rates. Recent studies have shown that a large part of the cellular traffic pertains to sharing popular contents. This highlights the need for decentralized and distributive approaches to managing multimedia traffic. Content-sharing via D2D clustered networks has emerged as a popular approach for alleviating the burden on the cellular network. Different studies have established that D2D communication in clusters can improve spectral and energy efficiency, achieve low latency while increasing the capacity of the network. To achieve effective content-sharing among users, appropriate clustering strategies are required. Therefore, the aim is to design and compare clustering approaches for D2D communication targeting content-sharing applications. Currently, most of researched and implemented clustering schemes are centralized or predominantly dependent on Evolved Node B (eNB). This thesis proposes a distributed architecture that supports clustering approaches to incorporate multimedia traffic. A content-sharing network is presented where some D2D User Equipment (DUE) function as content distributors for nearby devices. Two promising techniques are utilized, namely, Content-Centric Networking and Network Virtualization, to propose a distributed architecture, that supports efficient content delivery. We propose to use clustering at the user level for content-distribution. A weighted multi-factor clustering algorithm is proposed for grouping the DUEs sharing a common interest. Various performance parameters such as energy consumption, area spectral efficiency, and throughput have been considered for evaluating the proposed algorithm. The effect of number of clusters on the performance parameters is also discussed. The proposed algorithm has been further modified to allow for a trade-off between fairness and other performance parameters. A comprehensive simulation study is presented that demonstrates that the proposed clustering algorithm is more flexible and outperforms several well-known and state-of-the-art algorithms. The clustering process is subsequently evaluated from an individual user’s perspective for further performance improvement. We believe that some users, sharing common interests, are better off with the eNB rather than being in the clusters. We utilize machine learning algorithms namely, Deep Neural Network, Random Forest, and Support Vector Machine, to identify the users that are better served by the eNB and form clusters for the rest of the users. This proposed user segregation scheme can be used in conjunction with most clustering algorithms including the proposed multi-factor scheme. A comprehensive simulation study demonstrates that with such novel user segregation, the performance of individual users, as well as the whole network, can be significantly improved for throughput, energy consumption, and fairness

    Advances in Possibilistic Clustering with Application to Hyperspectral Image Processing

    Get PDF
    Η ομαδοποίηση δεδομένων είναι μια εδραιωμένη μεθοδολογία ανάλυσης δεδομένων που έχει χρησιμοποιηθεί εκτενώς σε διάφορα πεδία εφαρμογών κατά τη διάρκεια των τελευταίων δεκαετιών. Η παρούσα διατριβή εστιάζει κυρίως στην ευρύτερη οικογένεια των αλγορίθμων βελτιστοποίησης κόστους και πιο συγκεκριμένα στους αλγόριθμους ομαδοποίησης με βάση τα ενδεχόμενα (Possibilistic c-Means, PCM). Συγκεκριμένα, αφού εκτίθενται τα αδύνατα σημεία τους, προτείνονται νέοι (batch και online) PCM αλγόριθμοι που αποτελούν επεκτάσεις των προηγουμένων και αντιμετωπίζουν τα αδύνατα σημεία των πρώτων. Οι προτεινόμενοι αλγόριθμοι ομαδοποίησης βασίζονται κυρίως στην υιοθέτηση των εννοιών (α) της προσαρμοστικότητας παραμέτρων (parameter adaptivity), οι οποίες στους κλασσικούς PCM αλγορίθμους παραμένουν σταθερές κατά την εκτέλεσή τους και (β) της αραιότητας (sparsity). Αυτά τα χαρακτηριστικά προσδίδουν νέα δυναμική στους προτεινόμενους αλγορίθμους οι οποίοι πλέον: (α) είναι (κατ' αρχήν) σε θέση να προσδιορίσουν τον πραγματικό αριθμό των φυσικών ομάδων που σχηματίζονται από τα δεδομένα, (β) είναι ικανοί να αποκαλύψουν την υποκείμενη δομή ομαδοποίησης, ακόμη και σε δύσκολες περιπτώσεις, όπου οι φυσικές ομάδες βρίσκονται κοντά η μία στην άλλη ή/και έχουν σημαντικές διαφορές στις διακυμάνσεις ή/και στις πυκνότητές τους και (γ) είναι εύρωστοι στην παρουσία θορύβου και ακραίων σημείων. Επίσης, δίνονται θεωρητικά αποτελέσματα σχετικά με τη σύγκλιση των προτεινόμενων αλγορίθμων, τα οποία βρίσκουν επίσης εφαρμογή και στους κλασσικούς PCM αλγορίθμους. Η δυναμική των προτεινόμενων αλγορίθμων αναδεικνύεται μέσω εκτεταμένων πειραμάτων, τόσο σε συνθετικά όσο και σε πραγματικά δεδομένα. Επιπλέον, οι αλγόριθμοι αυτοί έχουν εφαρμοστεί με επιτυχία στο ιδιαίτερα απαιτητικό πρόβλημα της ομαδοποίησης σε υπερφασματικές εικόνες. Τέλος, αναπτύχθηκε και μια μέθοδος επιλογής χαρακτηριστικών κατάλληλη για υπερφασματικές εικόνες.Clustering is a well established data analysis methodology that has been extensively used in various fields of applications during the last decades. The main focus of the present thesis is on a well-known cost-function optimization-based family of clustering algorithms, called Possibilistic C-Means (PCM) algorithms. Specifically, the shortcomings of PCM algorithms are exposed and novel batch and online PCM schemes are proposed to cope with them. These schemes rely on (i) the adaptation of certain parameters which remain fixed during the execution of the original PCMs and (ii) the adoption of sparsity. The incorporation of these two characteristics renders the proposed schemes: (a) capable, in principle, to reveal the true number of physical clusters formed by the data, (b) capable to uncover the underlying clustering structure even in demanding cases, where the physical clusters are closely located to each other and/or have significant differences in their variances and/or densities, and (c) immune to the presence of noise and outliers. Moreover, theoretical results concerning the convergence of the proposed algorithms, also applicable to the classical PCMs, are provided. The potential of the proposed methods is demonstrated via extensive experimentation on both synthetic and real data sets. In addition, they have been successfully applied on the challenging problem of clustering in HyperSpectral Images (HSIs). Finally, a feature selection technique suitable for HSIs has also been developed

    Deep learning in food category recognition

    Get PDF
    Integrating artificial intelligence with food category recognition has been a field of interest for research for the past few decades. It is potentially one of the next steps in revolutionizing human interaction with food. The modern advent of big data and the development of data-oriented fields like deep learning have provided advancements in food category recognition. With increasing computational power and ever-larger food datasets, the approach’s potential has yet to be realized. This survey provides an overview of methods that can be applied to various food category recognition tasks, including detecting type, ingredients, quality, and quantity. We survey the core components for constructing a machine learning system for food category recognition, including datasets, data augmentation, hand-crafted feature extraction, and machine learning algorithms. We place a particular focus on the field of deep learning, including the utilization of convolutional neural networks, transfer learning, and semi-supervised learning. We provide an overview of relevant studies to promote further developments in food category recognition for research and industrial applicationsMRC (MC_PC_17171)Royal Society (RP202G0230)BHF (AA/18/3/34220)Hope Foundation for Cancer Research (RM60G0680)GCRF (P202PF11)Sino-UK Industrial Fund (RP202G0289)LIAS (P202ED10Data Science Enhancement Fund (P202RE237)Fight for Sight (24NN201);Sino-UK Education Fund (OP202006)BBSRC (RM32G0178B8

    Combining global and local information for the segmentation of MR images of the brain

    Get PDF
    Magnetic resonance imaging can provide high resolution volumetric images of the brain with exceptional soft tissue contrast. These factors allow the complex structure of the brain to be clearly visualised. This has lead to the development of quantitative methods to analyse neuroanatomical structures. In turn, this has promoted the use of computational methods to automate and improve these techniques. This thesis investigates methods to accurately segment MRI images of the brain. The use of global and local image information is considered, where global information includes image intensity distributions, means and variances and local information is based on the relationship between spatially neighbouring voxels. Methods are explored that aim to improve the classification and segmentation of MR images of the brain by combining these elements. Some common artefacts exist in MR brain images that can be seriously detrimental to image analysis methods. Methods to correct for these artifacts are assessed by exploring their effect, first with some well established classification methods and then with methods that combine global information with local information in the form of a Markov random field model. Another characteristic of MR images is the partial volume effect that occurs where signals from different tissues become mixed over the finite volume of a voxel. This effect is demonstrated and quantified using a simulation. Analysis methods that address these issues are tested on simulated and real MR images. They are also applied to study the structure of the temporal lobes in a group of patients with temporal lobe epilepsy. The results emphasise the benefits and limitations of applying these methods to a problem of this nature. The work in this thesis demonstrates the advantages of using global and local information together in the segmentation of MR brain images and proposes a generalised framework that allows this information to be combined in a flexible way

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 2

    Get PDF
    Papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake, held 1-3 Jun. 1992 at the Lyndon B. Johnson Space Center in Houston, Texas are included. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making

    Unsupervised monitoring of an elderly person\u27s activities of daily living using Kinect sensors and a power meter

    Get PDF
    The need for greater independence amongst the growing population of elderly people has made the concept of “ageing in place” an important area of research. Remote home monitoring strategies help the elderly deal with challenges involved in ageing in place and performing the activities of daily living (ADLs) independently. These monitoring approaches typically involve the use of several sensors, attached to the environment or person, in order to acquire data about the ADLs of the occupant being monitored. Some key drawbacks associated with many of the ADL monitoring approaches proposed for the elderly living alone need to be addressed. These include the need to label a training dataset of activities, use wearable devices or equip the house with many sensors. These approaches are also unable to concurrently monitor physical ADLs to detect emergency situations, such as falls, and instrumental ADLs to detect deviations from the daily routine. These are all indicative of deteriorating health in the elderly. To address these drawbacks, this research aimed to investigate the feasibility of unsupervised monitoring of both physical and instrumental ADLs of elderly people living alone via inexpensive minimally intrusive sensors. A hybrid framework was presented which combined two approaches for monitoring an elderly occupant’s physical and instrumental ADLs. Both approaches were trained based on unlabelled sensor data from the occupant’s normal behaviours. The data related to physical ADLs were captured from Kinect sensors and those related to instrumental ADLs were obtained using a combination of Kinect sensors and a power meter. Kinect sensors were employed in functional areas of the monitored environment to capture the occupant’s locations and 3D structures of their physical activities. The power meter measured the power consumption of home electrical appliances (HEAs) from the electricity panel. A novel unsupervised fuzzy approach was presented to monitor physical ADLs based on depth maps obtained from Kinect sensors. Epochs of activities associated with each monitored location were automatically identified, and the occupant’s behaviour patterns during each epoch were represented through the combinations of fuzzy attributes. A novel membership function generation technique was presented to elicit membership functions for attributes by analysing the data distribution of attributes while excluding noise and outliers in the data. The occupant’s behaviour patterns during each epoch of activity were then classified into frequent and infrequent categories using a data mining technique. Fuzzy rules were learned to model frequent behaviour patterns. An alarm was raised when the occupant’s behaviour in new data was recognised as frequent with a longer than usual duration or infrequent with a duration exceeding a data-driven value. Another novel unsupervised fuzzy approach to monitor instrumental ADLs took unlabelled training data from Kinect sensors and a power meter to model the key features of instrumental ADLs. Instrumental ADLs in the training dataset were identified based on associating the occupant’s locations with specific power signatures on the power line. A set of fuzzy rules was then developed to model the frequency and regularity of the instrumental activities tailored to the occupant. This set was subsequently used to monitor new data and to generate reports on deviations from normal behaviour patterns. As a proof of concept, the proposed monitoring approaches were evaluated using a dataset collected from a real-life setting. An evaluation of the results verified the high accuracy of the proposed technique to identify the epochs of activities over alternative techniques. The approach adopted for monitoring physical ADLs was found to improve elderly monitoring. It generated fuzzy rules that could represent the person’s physical ADLs and exclude noise and outliers in the data more efficiently than alternative approaches. The performance of different membership function generation techniques was compared. The fuzzy rule set obtained from the output of the proposed technique could accurately classify more scenarios of normal and abnormal behaviours. The approach for monitoring instrumental ADLs was also found to reliably distinguish power signatures generated automatically by self-regulated devices from those generated as a result of an elderly person’s instrumental ADLs. The evaluations also showed the effectiveness of the approach in correctly identifying elderly people’s interactions with specific HEAs and tracking simulated upward and downward deviations from normal behaviours. The fuzzy inference system in this approach was found to be robust in regards to errors when identifying instrumental ADLs as it could effectively classify normal and abnormal behaviour patterns despite errors in the list of the used HEAs
    corecore