192 research outputs found

    Airborne Measurements of Atmospheric Methane Column Abundance Made Using a Pulsed IPDA Lidar

    Get PDF
    We report airborne measurements of the column abundance of atmospheric methane made over an altitude range of 3-11 km using a direct detection IPDA lidar with a pulsed laser emitting at 1651 nm. The laser transmitter was a tunable, seeded optical parametric amplifier (OPA) pumped by a Nd:YAG laser and the receiver used a photomultiplier detector and photon counting electronics. The results follow the expected changes with aircraft altitude and the measured line shapes and optical depths show good agreement with theoretical calculations

    Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS): Final Report of the ASCENDS Ad Hoc Science Definition Team

    Get PDF
    Improved remote sensing observations of atmospheric carbon dioxide (CO2) are critically needed to quantify, monitor, and understand the Earth's carbon cycle and its evolution in a changing climate. The processes governing ocean and terrestrial carbon uptake remain poorly understood,especially in dynamic regions with large carbon stocks and strong vulnerability to climate change,for example, the tropical land biosphere, the northern hemisphere high latitudes, and the Southern Ocean. Because the passive spectrometers used by GOSAT (Greenhouse gases Observing SATellite) and OCO-2 (Orbiting Carbon Observatory-2) require sunlit and cloud-free conditions,current observations over these regions remain infrequent and are subject to biases. These short comings limit our ability to understand and predict the processes controlling the carbon cycle on regional to global scales.In contrast, active CO2 remote-sensing techniques allow accurate measurements to be taken day and night, over ocean and land surfaces, in the presence of thin or scattered clouds, and at all times of year. Because of these benefits, the National Research Council recommended the National Aeronautics and Space Administration (NASA) Active Sensing of CO2 Emissions over Nights,Days, and Seasons (ASCENDS) mission in the 2007 report Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. The ability of ASCENDS to collect low-bias observations in these key regions is expected to address important gaps in our knowledge of the contemporary carbon cycle.The ASCENDS ad hoc Science Definition Team (SDT), comprised of carbon cycle modeling and active remote sensing instrument teams throughout the United States (US), worked to develop the mission's requirements and advance its readiness from 2008 through 2018. Numerous scientific investigations were carried out to identify the benefit and feasibility of active CO2 remote sensing measurements for improving our understanding of CO2 sources and sinks. This report summarizes their findings and recommendations based on mission modeling studies, analysis of ancillary meteorological data products, development and demonstration of candidate technologies, anddesign studies of the ASCENDS mission concept

    Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    Get PDF
    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm

    Development of Double and Triple-Pulsed 2-micron IPDA Lidars for Column CO2 Measurements

    Get PDF
    Carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and globalradiation budget on Earth. CO2 role on Earths climate is complicated due to different interactions with various climatecomponents that include the atmosphere, the biosphere and the hydrosphere. Although extensive worldwide efforts formonitoring atmospheric CO2 through various techniques, including in-situ and passive sensors, are taking place highuncertainties exist in quantifying CO2 sources and sinks. These uncertainties are mainly due to insufficient spatial andtemporal mapping of the gas. Therefore it is required to have more rapid and accurate CO2 monitoring with higheruniform coverage and higher resolution. CO2 DIAL operating in the 2-m band offer better near-surface CO2measurement sensitivity due to the intrinsically stronger absorption lines. For more than 15 years, NASA LangleyResearch Center (LaRC) contributed in developing several 2-m CO2 DIAL systems and technologies. This paperfocuses on the current development of the airborne double-pulsed and triple-pulsed 2-m CO2 integrated pathdifferential absorption (IPDA) lidar system at NASA LaRC. This includes the IPDA system development andintegration. Results from ground and airborne CO2 IPDA testing will be presented. The potential of scaling suchtechnology to a space mission will be addressed

    Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    Get PDF
    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity

    New Broadband LIDAR for Greenhouse Carbon Dioxide Gas Sensing in the Earth's Atmosphere

    Get PDF
    We present demonstration of a novel broadband lidar technique capable of dealing with the atmospherically induced variations in CO2 absorption using a Fabry-Perot based detector and a broadband laser. The Fabry-Perot solid etalon in the receiver part is tuned to match the wavelength of several CO2 absorption lines simultaneously. The broadband technique tremendously reduces the requirement for source wavelength stability, instead putting this responsibility on the Fabry- Perot based receiver. The instrument technology we are developing has a clear pathway to space and realistic potential to become a robust, low risk space measurement system

    Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    Get PDF
    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity

    Optical Parametric Technology for Methane Measurements

    Get PDF
    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 microJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb)

    Methane Optical Density Measurements with an Integrated Path Differential Absorption Lidar from an Airborne Platform

    Get PDF
    We report on an airborne demonstration of atmospheric methane (CH4) measurements with an Integrated Path Differential Absorption (IPDA) lidar using an optical parametric amplifier (OPA) and optical parametric oscillator (OPO) laser transmitter and sensitive avalanche photodiode detector. The lidar measures the atmospheric CH4 absorption at multiple, discrete wavelengths near 1650.96 nm. The instrument was deployed in the fall of 2015, aboard NASA's DC-8 airborne laboratory along with an in-situ spectrometer and measured CH4 over a wide range of surfaces and atmospheric conditions from altitudes of 2 km to 13 km. In this paper, we will show the results from our flights, compare the performance of the two laser transmitters, and identify areas of improvement for the lidar
    • …
    corecore