10,898 research outputs found

    21st Century Simulation: Exploiting High Performance Computing and Data Analysis

    Get PDF
    This paper identifies, defines, and analyzes the limitations imposed on Modeling and Simulation by outmoded paradigms in computer utilization and data analysis. The authors then discuss two emerging capabilities to overcome these limitations: High Performance Parallel Computing and Advanced Data Analysis. First, parallel computing, in supercomputers and Linux clusters, has proven effective by providing users an advantage in computing power. This has been characterized as a ten-year lead over the use of single-processor computers. Second, advanced data analysis techniques are both necessitated and enabled by this leap in computing power. JFCOM's JESPP project is one of the few simulation initiatives to effectively embrace these concepts. The challenges facing the defense analyst today have grown to include the need to consider operations among non-combatant populations, to focus on impacts to civilian infrastructure, to differentiate combatants from non-combatants, and to understand non-linear, asymmetric warfare. These requirements stretch both current computational techniques and data analysis methodologies. In this paper, documented examples and potential solutions will be advanced. The authors discuss the paths to successful implementation based on their experience. Reviewed technologies include parallel computing, cluster computing, grid computing, data logging, OpsResearch, database advances, data mining, evolutionary computing, genetic algorithms, and Monte Carlo sensitivity analyses. The modeling and simulation community has significant potential to provide more opportunities for training and analysis. Simulations must include increasingly sophisticated environments, better emulations of foes, and more realistic civilian populations. Overcoming the implementation challenges will produce dramatically better insights, for trainees and analysts. High Performance Parallel Computing and Advanced Data Analysis promise increased understanding of future vulnerabilities to help avoid unneeded mission failures and unacceptable personnel losses. The authors set forth road maps for rapid prototyping and adoption of advanced capabilities. They discuss the beneficial impact of embracing these technologies, as well as risk mitigation required to ensure success

    SARSCEST (human factors)

    Get PDF
    People interact with the processes and products of contemporary technology. Individuals are affected by these in various ways and individuals shape them. Such interactions come under the label 'human factors'. To expand the understanding of those to whom the term is relatively unfamiliar, its domain includes both an applied science and applications of knowledge. It means both research and development, with implications of research both for basic science and for development. It encompasses not only design and testing but also training and personnel requirements, even though some unwisely try to split these apart both by name and institutionally. The territory includes more than performance at work, though concentration on that aspect, epitomized in the derivation of the term ergonomics, has overshadowed human factors interest in interactions between technology and the home, health, safety, consumers, children and later life, the handicapped, sports and recreation education, and travel. Two aspects of technology considered most significant for work performance, systems and automation, and several approaches to these, are discussed

    A comparison study of biologically inspired propulsion systems for an autonomous underwater vehicle

    Get PDF
    The field of Autonomous Underwater Vehicles (AUVs) has increased dramatically in size and scope over the past two decades. Application areas for AUVs are numerous and varied; from deep sea exploration, to pipeline surveillance to mine clearing. However, one limiting factor with the current technology is the duration of missions that can be undertaken and one contributing factor to this is the efficiency of the propulsion system, which is usually based on marine propellers. As fish are highly efficient swimmers greater propulsive efficiency may be possible by mimicking their fish tail propulsion system. The main concept behind this work was therefore to investigate whether a biomimetic fish-like propulsion system is a viable propulsion system for an underwater vehicle and to determine experimentally the efficiency benefits of using such a system. There have been numerous studies into biomimetic fish like propulsion systems and robotic fish in the past with many claims being made as to the benefits of a fish like propulsion system over conventional marine propulsion systems. These claims include increased efficiency and greater manoeuvrability. However, there is little published experimental data to characterise the propulsive efficiency of a fish like propulsive system. Also, very few direct experimental comparisons have been made between biomimetic and conventional propulsion systems. This work attempts to address these issues by directly comparing experimentally a biomimetic underwater propulsion system to a conventional propulsion system to allow for a better understanding of the potential benefits of the biomimetic system. This work is split into three parts. Firstly, the design and development of a novel prototype vehicle called the RoboSalmon is covered. This vehicle has a biomimetic tendon drive propulsion system which utilizes one servo motor for actuation and has a suite of onboard sensors and a data logger. The second part of this work focuses on the development of a mathematical model of the RoboSalmon vehicle to allow for a better understanding of the dynamics of the system. Simulation results from this model are compared to the experimental results and show good correlation. The final part of the work presents the experimental results obtained comparing the RoboSalmon prototype with the biomimetic tail system to the propeller and rudder system. These experiments include a study into the straight swimming performance, recoil motion, start up transients and power consumption. For forward swimming the maximum surge velocity of the RoboSalmon was 0.18ms-1 and at this velocity the biomimetic system was found to be more efficient than the propeller system. When manoeuvring the biomimetic system was found to have a significantly reduced turning radius. The thesis concludes with a discussion of the main findings from each aspect of the work, covering the benefits obtained from using the tendon drive system in terms of efficiencies and manoeuvring performance. The limitations of the system are also discussed and suggestions for further work are included

    Role of Space Station: The how of space industrialization

    Get PDF
    The roles of the Space Station, as an R&D facility, as part of an industrial system which support space industralization, and as a transportation node for space operations are considered. Industrial opportunities relative to these roles are identified and space station concepts responsive to these roles are discussed

    State and Perspectives of Underwater Robotics - Role of Laboratory for Underwater Systems and Technologies

    Get PDF
    The state and perspectives of underwater robotics is presented. The role and achievements of Laboratory for underwater systems and technologies (LABUST) in this domain is described. Two LABUST projects are shortly described

    Interoperability Among Unmanned Maritime Vehicles: Review and First In-field Experimentation

    Get PDF
    Complex maritime missions, both above and below the surface, have traditionally been carried out by manned surface ships and submarines equipped with advanced sensor systems. Unmanned Maritime Vehicles (UMVs) are increasingly demonstrating their potential for improving existing naval capabilities due to their rapid deployability, easy scalability, and high reconfigurability, offering a reduction in both operational time and cost. In addition, they mitigate the risk to personnel by leaving the man far-from-the-risk but in-the-loop of decision making. In the long-term, a clear interoperability framework between unmanned systems, human operators, and legacy platforms will be crucial for effective joint operations planning and execution. However, the present multi-vendor multi-protocol solutions in multi-domain UMVs activities are hard to interoperate without common mission control interfaces and communication protocol schemes. Furthermore, the underwater domain presents significant challenges that cannot be satisfied with the solutions developed for terrestrial networks. In this paper, the interoperability topic is discussed blending a review of the technological growth from 2000 onwards with recent authors' in-field experience; finally, important research directions for the future are given. Within the broad framework of interoperability in general, the paper focuses on the aspect of interoperability among UMVs not neglecting the role of the human operator in the loop. The picture emerging from the review demonstrates that interoperability is currently receiving a high level of attention with a great and diverse deal of effort. Besides, the manuscript describes the experience from a sea trial exercise, where interoperability has been demonstrated by integrating heterogeneous autonomous UMVs into the NATO Centre for Maritime Research and Experimentation (CMRE) network, using different robotic middlewares and acoustic modem technologies to implement a multistatic active sonar system. A perspective for the interoperability in marine robotics missions emerges in the paper, through a discussion of current capabilities, in-field experience and future advanced technologies unique to UMVs. Nonetheless, their application spread is slowed down by the lack of human confidence. In fact, an interoperable system-of-systems of autonomous UMVs will require operators involved only at a supervisory level. As trust develops, endorsed by stable and mature interoperability, human monitoring will be diminished to exploit the tremendous potential of fully autonomous UMVs

    INTEROPERABILITY FOR MODELING AND SIMULATION IN MARITIME EXTENDED FRAMEWORK

    Get PDF
    This thesis reports on the most relevant researches performed during the years of the Ph.D. at the Genova University and within the Simulation Team. The researches have been performed according to M&S well known recognized standards. The studies performed on interoperable simulation cover all the environments of the Extended Maritime Framework, namely Sea Surface, Underwater, Air, Coast & Land, Space and Cyber Space. The applications cover both the civil and defence domain. The aim is to demonstrate the potential of M&S applications for the Extended Maritime Framework, applied to innovative unmanned vehicles as well as to traditional assets, human personnel included. A variety of techniques and methodology have been fruitfully applied in the researches, ranging from interoperable simulation, discrete event simulation, stochastic simulation, artificial intelligence, decision support system and even human behaviour modelling

    Maritime Advanced Geospatial Intelligence Craft for Oil Spill Response: Selected Resources and Annotations

    Get PDF
    This selection of resources highlights the utility of Unmanned Surface Vehicles (USV) for use in marine spill response. Each entry is followed by a brief summary and evaluation of the source (i.e., the annotation). Most annotations will define the scope of the source, list significant cross references, and identify relevant USV capabilities. There is no attempt to provide actual hypotheses, data, or graphics, especially concerning cited articles published in refereed journals. The purpose of the annotation is to inform the reader of the relevance, accuracy, and quality of the sources cited. Relevance relates to the citation’s presentation of capabilities that improve marine spill response operations. Significant interest involves the use of sensors that characterize the environment to support oil spill cleanup operations. The diversity of resources is especially relevant since no two oil spills are the same owing to the variation in oil types, locations, and weather conditions. The development of USVs for oil spill monitoring, cleanup, and science reduces some of the dependence on expensive ship time

    CONCEPTUAL DESIGN OF THE USMC FUTURE VERTICAL LIFT (FVL) LIVING LAB

    Get PDF
    The United States Marine Corps (USMC) is developing the Future Vertical Lift (FVL) system that will rely heavily on Marine-machine teaming, a complex process that requires further development. The development of a living lab (LL)—a multi-function network of simulators that will serve as the platform for testing, experimenting, and training new technologies and ideas for how the FVL will operate—will help mitigate Marine-machine collaboration and trust issues. This capstone studies the options and requirements for developing a LL through interviews, research that focuses on existing technologies and operational concepts, and Model-Based Systems Engineering tools using a systems engineering approach. The report includes a detailed needs and requirements analysis, stakeholder analysis, and functional design. The team presents a conceptual design, that includes the system architecture, comprising of system, function and physical views, system lifecycle, and the evaluation criteria for a LL. The final product is a set of use cases and concepts of operation. The USMC needs a new approach that supports rapid and relevant upgrades that optimizes the system lifecycle and keeps the Marine in mind. This team recommends the USMC consider these findings and continue researching and developing a LL.ONR Arlington, VA 22203Civilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyApproved for public release. Distribution is unlimited
    • …
    corecore