288 research outputs found

    Strengthening of prism beam by using NSM technique with roots planted in concrete

    Get PDF
    This paper presents experimental results of four prismatic concrete reinforced beam and strengthened by NSM (Near surface mounted) FRP (Fiber Reinforced Polymer) reinforced technique, with additional roots planted in the concrete. The strengthening technique causes load capacity of beams to increase from (6%-8%).A decrease in mid-span deflection was also observed from (4%-5%).Using this technique gave increasing in flexural beam resistant under the same conditions and this increasing was also noted in shear beam resistant

    Design and development of wireless stethoscope with data logging functions

    Get PDF
    Stethoscope is a special device to hear heartbeat sound and monitor pulmonary disease. The most type of stethoscope used these days is the acoustic stethoscope. However, the problem with this acoustic stethoscope is the sound level very low. It is hard to analyze the heart sound and difficult to be diagnosed by a medical doctor. Therefore, this project was developed to monitor and display heartbeat sound using wireless digital stethoscope. The condenser microphone is used as a sensor to capture the low sensitivity of heart sound signal and transmit the signal using Antenna Arduino ZigBee Pro Series 1. Microcontroller Arduino Nano and Arduino Mega were used as a platform to process the signal and sent the result to the computer. Graphical User Interface (GUI) was developed using MATLAB software to monitor real time electrocardiogram (ECG) waveform and for data logging purpose. The result shows that this device able to transmit and receive ECG waveform wirelessly. The ECG signal can be recorded through data logging application for further analysis by the medical personnel

    Wearable Devices in Health Monitoring from the Environmental towards Multiple Domains: A Survey

    Get PDF
    The World Health Organization (WHO) recognizes the environmental, behavioral, physiological, and psychological domains that impact adversely human health, well-being, and quality of life (QoL) in general. The environmental domain has significant interaction with the others. With respect to proactive and personalized medicine and the Internet of medical things (IoMT), wearables are most important for continuous health monitoring. In this work, we analyze wearables in healthcare from a perspective of innovation by categorizing them according to the four domains. Furthermore, we consider the mode of wearability, costs, and prolonged monitoring. We identify features and investigate the wearable devices in the terms of sampling rate, resolution, data usage (propagation), and data transmission. We also investigate applications of wearable devices. Web of Science, Scopus, PubMed, IEEE Xplore, and ACM Library delivered wearables that we require to monitor at least one environmental parameter, e.g., a pollutant. According to the number of domains, from which the wearables record data, we identify groups: G1, environmental parameters only; G2, environmental and behavioral parameters; G3, environmental, behavioral, and physiological parameters; and G4 parameters from all domains. In total, we included 53 devices of which 35, 9, 9, and 0 belong to G1, G2, G3, and G4, respectively. Furthermore, 32, 11, 7, and 5 wearables are applied in general health and well-being monitoring, specific diagnostics, disease management, and non-medical. We further propose customized and quantified output for future wearables from both, the perspectives of users, as well as physicians. Our study shows a shift of wearable devices towards disease management and particular applications. It also indicates the significant role of wearables in proactive healthcare, having capability of creating big data and linking to external healthcare systems for real-time monitoring and care delivery at the point of perception

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios

    Wireless sensor network for health monitoring

    Get PDF
    Wireless Sensor Network (WSN) is becoming a significant enabling technology for a wide variety of applications. Recent advances in WSN have facilitated the realization of pervasive health monitoring for both homecare and hospital environments. Current technological advances in sensors, power-efficient integrated circuits, and wireless communication have allowed the development of miniature, lightweight, low-cost, and smart physiological sensor nodes. These nodes are capable of sensing, processing, and communicating one or more vital signs. Furthermore, they can be used in wireless personal area networks (WPANs) or wireless body sensor networks (WBSNs) for health monitoring. Many studies were performed and/or are under way in order to develop flexible, reliable, secure, real-time, and power-efficient WBSNs suitable for healthcare applications. To efficiently control and monitor a patient’s status as well as to reduce the cost of power and maintenance, IEEE 802.15.4/ZigBee, a communication standard for low-power wireless communication, is developed as a new efficient technology in health monitoring systems. The main contribution of this dissertation is to provide a modeling, analysis, and design framework for WSN health monitoring systems. This dissertation describes the applications of wireless sensor networks in the healthcare area and discusses the related issues and challenges. The main goal of this study is to evaluate the acceptance of the current wireless standard for enabling WSNs for healthcare monitoring in real environment. Its focus is on IEEE 802.15.4/ZigBee protocols combined with hardware and software platforms. Especially, it focuses on Carrier Sense Multiple Access with Collision Avoidance mechanism (CSMA/CA) algorithms for reliable communication in multiple accessing networks. The performance analysis metrics are established through measured data and mathematical analysis. This dissertation evaluates the network performance of the IEEE 802.15.4 unslotted CSMA/CA mechanism for different parameter settings through analytical modeling and simulation. For this protocol, a Markov chain model is used to derive the analytical expression of normalized packet transmission, reliability, channel access delay, and energy consumption. This model is used to describe the stochastic behavior of random access and deterministic behavior of IEEE 802.15.4 CSMA/CA. By using it, the different aspects of health monitoring can be analyzed. The sound transmission of heart beat with other smaller data packet transmission is studied. The obtained theoretical analysis and simulation results can be used to estimate and design the high performance health monitoring systems

    Secure Data Collection and Analysis in Smart Health Monitoring

    Get PDF
    Smart health monitoring uses real-time monitored data to support diagnosis, treatment, and health decision-making in modern smart healthcare systems and benefit our daily life. The accurate health monitoring and prompt transmission of health data are facilitated by the ever-evolving on-body sensors, wireless communication technologies, and wireless sensing techniques. Although the users have witnessed the convenience of smart health monitoring, severe privacy and security concerns on the valuable and sensitive collected data come along with the merit. The data collection, transmission, and analysis are vulnerable to various attacks, e.g., eavesdropping, due to the open nature of wireless media, the resource constraints of sensing devices, and the lack of security protocols. These deficiencies not only make conventional cryptographic methods not applicable in smart health monitoring but also put many obstacles in the path of designing privacy protection mechanisms. In this dissertation, we design dedicated schemes to achieve secure data collection and analysis in smart health monitoring. The first two works propose two robust and secure authentication schemes based on Electrocardiogram (ECG), which outperform traditional user identity authentication schemes in health monitoring, to restrict the access to collected data to legitimate users. To improve the practicality of ECG-based authentication, we address the nonuniformity and sensitivity of ECG signals, as well as the noise contamination issue. The next work investigates an extended authentication goal, denoted as wearable-user pair authentication. It simultaneously authenticates the user identity and device identity to provide further protection. We exploit the uniqueness of the interference between different wireless protocols, which is common in health monitoring due to devices\u27 varying sensing and transmission demands, and design a wearable-user pair authentication scheme based on the interference. However, the harm of this interference is also outstanding. Thus, in the fourth work, we use wireless human activity recognition in health monitoring as an example and analyze how this interference may jeopardize it. We identify a new attack that can produce false recognition result and discuss potential countermeasures against this attack. In the end, we move to a broader scenario and protect the statistics of distributed data reported in mobile crowd sensing, a common practice used in public health monitoring for data collection. We deploy differential privacy to enable the indistinguishability of workers\u27 locations and sensing data without the help of a trusted entity while meeting the accuracy demands of crowd sensing tasks

    Unobtrusive Health Monitoring in Private Spaces: The Smart Home

    Get PDF
    With the advances in sensor technology, big data, and artificial intelligence, unobtrusive in-home health monitoring has been a research focus for decades. Following up our research on smart vehicles, within the framework of unobtrusive health monitoring in private spaces, this work attempts to provide a guide to current sensor technology for unobtrusive in-home monitoring by a literature review of the state of the art and to answer, in particular, the questions: (1) What types of sensors can be used for unobtrusive in-home health data acquisition? (2) Where should the sensors be placed? (3) What data can be monitored in a smart home? (4) How can the obtained data support the monitoring functions? We conducted a retrospective literature review and summarized the state-of-the-art research on leveraging sensor technology for unobtrusive in-home health monitoring. For structured analysis, we developed a four-category terminology (location, unobtrusive sensor, data, and monitoring functions). We acquired 912 unique articles from four relevant databases (ACM Digital Lib, IEEE Xplore, PubMed, and Scopus) and screened them for relevance, resulting in n=55 papers analyzed in a structured manner using the terminology. The results delivered 25 types of sensors (motion sensor, contact sensor, pressure sensor, electrical current sensor, etc.) that can be deployed within rooms, static facilities, or electric appliances in an ambient way. While behavioral data (e.g., presence (n=38), time spent on activities (n=18)) can be acquired effortlessly, physiological parameters (e.g., heart rate, respiratory rate) are measurable on a limited scale (n=5). Behavioral data contribute to functional monitoring. Emergency monitoring can be built up on behavioral and environmental data. Acquired physiological parameters allow reasonable monitoring of physiological functions to a limited extent. Environmental data and behavioral data also detect safety and security abnormalities. Social interaction monitoring relies mainly on direct monitoring of tools of communication (smartphone; computer). In summary, convincing proof of a clear effect of these monitoring functions on clinical outcome with a large sample size and long-term monitoring is still lacking

    Wireless body area sensor networks signal processing and communication framework: Survey on sensing, communication technologies, delivery and feedback

    Get PDF
    Problem statement: The Wireless Body Area Sensor Networks (WBASNs) is a wireless network used for communication among sensor nodes operating on or inside the human body in order to monitor vital body parameters and movements.This study surveys the state-of-the-art on Wireless Body Area Networks, discussing the major components of research in this area including physiological sensing and preprocessing, WBASNs communication techniques and data fusion for gathering data from sensors.In addition, data analysis and feedback will be presented including feature extraction, detection and classification of human related phenomena.Approach: Comparative studies of the technologies and techniques used in such systems will be provided in this study, using qualitative comparisons and use case analysis to give insight on potential uses for different techniques.Results and Conclusion: Wireless Sensor Networks (WSNs) technologies are considered as one of the key of the research areas in computer science and healthcare application industries.Sensor supply chain and communication technologies used within the system and power consumption therein, depend largely on the use case and the characteristics of the application.Authors conclude that Life-saving applications and thorough studies and tests should be conducted before WBANs can be widely applied to humans, particularly to address the challenges related to robust techniques for detection and classification to increase the accuracy and hence the confidence of applying such techniques without physician intervention

    Real Time Gas Monitoring System Using Wireless Sensor Network

    Get PDF
    Miner’s safety is the main issue in the present era. Miner’s health is affected by many means which includes unstable and cumbersome underground activities and awkward loads, heavy tools and equipment, exposure to toxic dust and chemicals, gas or dust explosions, improper use of explosives, gas intoxications, collapsing of mine structures, electrical burn, fires, flooding, rock falls from roofs and side walls workers stumbling/slipping/falling, or errors from malfunctioning or improperly used mining equipment. In earlier days for detection of gases canary and small animals are used but they didn’t provide the exact condition of the mines so safety in the mine in not guaranteed. Hence, there is a need of monitoring system which utilised the ZigBee wireless sensor network technology. There are two units of the monitoring system Sensor unit and Monitoring unit. Sensor unit will be placed in the underground section and Monitoring unit will be placed in the above the mines from where monitoring is done. Firstly, the Sensor unit is placed in the underground section of the mine. Where input is taken from the sensors in terms of Methane (CH4) i.e. MQ-2 sensor, Hydrogen Sulphide (H2S) i.e. MQ-136 sensor, and Natural Gases i.e. MQ-5 sensor. Then they are compared with their threshold value by the Microcontroller Module and if the value is above the threshold value, the Buzzer starts ringing meanwhile data is displayed in the Display module and sent to the Wireless Communication Module of the Monitor unit i.e. ends device or coordinator through the Wireless Communication Module of the Sensor unit i.e. router. In this way, the study can help the miners get relief from any casualty and ultimately save their lives. The device encompasses a large range of networking. The data can also be stored for future investigation. The device is also durable and costs effective with a price of approx. Rs. 6,500 to 7,000/-
    corecore