115 research outputs found

    Emulating Industrial Control System Field Devices Using Gumstix Technology

    Get PDF
    Industrial Control Systems (ICS) have an inherent lack of security and situational awareness capabilities at the field device level. Yet these systems comprise a significant portion of the nation\u27s critical infrastructure. Currently, there is little insight into the characterization of attacks on ICS. Stuxnet provided an initial look at the type of tactics that can be employed to create physical damage via cyber means. The question still remains, however, as to the extent of malware and attacks that are targeting the critical infrastructure, along with the various methods employed to target systems associated with the ICS environment. This research presents a device using Gumstix technology that emulates an ICS field device. The emulation device is low-cost, adaptable to myriad ICS environments and provides logging capabilities at the field device level. The device was evaluated to ensure conformity to RFC standards and that the operating characteristics are consistent with actual field devices

    Teollisuusautomaatiojärjestelmien tunnistus ja luokittelu IP-verkoissa

    Get PDF
    Industrial Control Systems (ICS) are an essential part of the critical infrastructure of society and becoming increasingly vulnerable to cyber attacks performed over computer networks. The introduction of remote access connections combined with mistakes in automation system configurations expose ICSs to attacks coming from public Internet. Insufficient IT security policies and weaknesses in security features of automation systems increase the risk of a successful cyber attack considerably. In recent years the amount of observed cyber attacks has been on constant rise, signaling the need of new methods for finding and protecting vulnerable automation systems. So far, search engines for Internet connected devices, such as Shodan, have been a great asset in mapping the scale of the problem. In this theses methods are presented to identify and classify industrial control systems over IP based networking protocols. A great portion of protocols used in automation networks contain specific diagnostic requests for pulling identification information from a device. Port scanning methods combined with more elaborate service scan probes can be used to extract identifying data fields from an automation device. Also, a model for automated finding and reporting of vulnerable ICS devices is presented. A prototype software was created and tested with real ICS devices to demonstrate the viability of the model. The target set was gathered from Finnish devices directly connected to the public Internet. Initial results were promising as devices or systems were identified at 99% success ratio. A specially crafted identification ruleset and detection database was compiled to work with the prototype. However, a more comprehensive detection library of ICS device types is needed before the prototype is ready to be used in different environments. Also, other features which help to further assess the device purpose and system criticality would be some key improvements for the future versions of the prototype.Yhteiskunnan kriittiseen infrastruktuuriin kuuluvat teollisuusautomaatiojärjestelmät ovat yhä enemmissä määrin alttiita tietoverkkojen kautta tapahtuville kyberhyökkäyksille. Etähallintayhteyksien yleistyminen ja virheet järjestelmien konfiguraatioissa mahdollistavat hyökkäykset jopa suoraa Internetistä käsin. Puutteelliset tietoturvakäytännöt ja teollisuusautomaatiojärjestelmien heikot suojaukset lisäävät onnistuneen kyberhyökkäyksen riskiä huomattavasti. Viime vuosina kyberhyökkäysten määrä maailmalla on ollut jatkuvassa kasvussa ja siksi tarve uusille menetelmille haavoittuvaisten järjestelmien löytämiseksi ja suojaamiseksi on olemassa. Internetiin kytkeytyneiden laitteiden hakukoneet, kuten Shodan, ovat olleet suurena apuna ongelman laajuuden kartoittamisessa. Tässä työssä esitellään menetelmiä teollisuusautomaatiojärjestelmien tunnistamiseksi ja luokittelemiseksi käyttäen IP-pohjaisia tietoliikenneprotokollia. Suuri osa automaatioverkoissa käytetyistä protokollista sisältää erityisiä diagnostiikkakutsuja laitteen tunnistetietojen selvittämiseksi. Porttiskannauksella ja tarkemmalla palvelukohtaisella skannauksella laitteesta voidaan saada yksilöivää tunnistetietoa. Työssä esitellään myös malli automaattiselle haavoittuvaisten teollisuusautomaatiojärjestelmien löytämiselle ja raportoimiselle. Mallin tueksi esitellään ohjelmistoprototyyppi, jolla mallin toimivuutta testattiin käyttäen testijoukkona oikeita Suomesta löytyviä, julkiseen Internetiin kytkeytyneitä teollisuusautomaatiolaitteita. Prototyypin alustavat tulokset olivat lupaavia: laitteille tai järjestelmille kyettiin antamaan jokin tunniste 99 % tapauksista käyttäen luokittelussa apuna prototyypille luotua tunnistekirjastoa. Ohjelmiston yleisempi käyttö vaatii kuitenkin kattavamman automaatiolaitteiden tunnistekirjaston luomista sekä prototyypin jatkokehitystä: tehokkaampi tunnistaminen edellyttää automaatiojärjestelmien toimintaympäristön ja kriittisyyden tarkempaa analysointia

    Emulation of Industrial Control Field Device Protocols

    Get PDF
    It has been shown that thousands of industrial control devices are exposed to the Internet, however, the extent and nature of attacks on such devices remains unknown. The first step to understanding security problems that face modern supervisory control and data acquisition (SCADA) and industrial controls networks is to understand the various attacks launched on Internet-connected field devices. This thesis describes the design and implementation of an industrial control emulator on a Gumstix single-board computer as a solution. This emulator acts as a decoy field device, or honeypot, intended to be probed and attacked via an Internet connection. Evaluation techniques are developed to assess the accuracy of the emulation implemented on the Gumstix and are compared against the implementation on a standard PC and the emulation target, a Koyo DirectLogic 405 programmable logic controller. The results show that both the Gumstix and PC emulator platforms are very accurate to the workloads presented. This suggests that a honeypot implemented on a Gumstix emulator and a standard PC are both suitable for applications in SCADA attack-landscape research

    An Empirical Analysis of Cyber Deception Systems

    Get PDF

    A critical review of cyber-physical security for building automation systems

    Full text link
    Modern Building Automation Systems (BASs), as the brain that enables the smartness of a smart building, often require increased connectivity both among system components as well as with outside entities, such as optimized automation via outsourced cloud analytics and increased building-grid integrations. However, increased connectivity and accessibility come with increased cyber security threats. BASs were historically developed as closed environments with limited cyber-security considerations. As a result, BASs in many buildings are vulnerable to cyber-attacks that may cause adverse consequences, such as occupant discomfort, excessive energy usage, and unexpected equipment downtime. Therefore, there is a strong need to advance the state-of-the-art in cyber-physical security for BASs and provide practical solutions for attack mitigation in buildings. However, an inclusive and systematic review of BAS vulnerabilities, potential cyber-attacks with impact assessment, detection & defense approaches, and cyber-secure resilient control strategies is currently lacking in the literature. This review paper fills the gap by providing a comprehensive up-to-date review of cyber-physical security for BASs at three levels in commercial buildings: management level, automation level, and field level. The general BASs vulnerabilities and protocol-specific vulnerabilities for the four dominant BAS protocols are reviewed, followed by a discussion on four attack targets and seven potential attack scenarios. The impact of cyber-attacks on BASs is summarized as signal corruption, signal delaying, and signal blocking. The typical cyber-attack detection and defense approaches are identified at the three levels. Cyber-secure resilient control strategies for BASs under attack are categorized into passive and active resilient control schemes. Open challenges and future opportunities are finally discussed.Comment: 38 pages, 7 figures, 6 tables, submitted to Annual Reviews in Contro

    Using Global Honeypot Networks to Detect Targeted ICS Attacks

    Get PDF
    Defending industrial control systems (ICS) in the cyber domain is both helped and hindered by bespoke systems integrating heterogeneous devices for unique purposes. Because of this fragmentation, observed attacks against ICS have been targeted and skilled, making them difficult to identify prior to initiation. Furthermore, organisations may be hesitant to share business-sensitive details of an intrusion that would otherwise assist the security community. In this work, we present the largest study of high-interaction ICS honeypots to date and demonstrate that a network of internet-connected honeypots can be used to identify and profile targeted ICS attacks. Our study relies on a network of 120 high-interaction honeypots in 22 countries that mimic programmable logic controllers and remote terminal units. We provide a detailed analysis of 80,000 interactions over 13 months, of which only nine made malicious use of an industrial protocol. Malicious interactions included denial of service and replay attacks that manipulated logic, leveraged protocol implementation gaps and exploited buffer overflows. While the yield was small, the impact was high, as these were skilled, targeted exploits previously unknown to the ICS community. By comparison with other ICS honeypot studies, we demonstrate that high-quality deception over long periods is necessary for such a honeypot network to be effective. As part of this argument, we discuss the accidental and intentional reasons why an internet-connected honeypot might be targeted. We also provide recommendations for effective, strategic use of such networks.Gates Cambridge Trus

    Cybersecurity analysis of a SCADA system under current standards, client requisites, and penetration testing

    Get PDF
    Supervisory Control and Data Acquisition (SCADA) systems are essential for monitoring and controlling a country's Critical Infrastructures (CI) such as electrical power grids, gas, water supply, and transportation services. These systems used to be mostly isolated and secure, but this is no longer true due to the use of wider and interconnected communication networks to reap benefits such as scalability, reliability, usability, and integration. This architectural change together with the critical importance of these systems made them desirable cyber-attack targets. Just as in other Information Technology (IT) systems, standards and best practices have been developed to provide guidance for SCADA developers to increase the security of their systems against cyber-attacks.With the assistance of EFACEC, this work provides an analysis of a SCADA system under current standards, client requisites, and testing of vulnerabilities in an actual prototype system. Our aim is to provide guidance by example on how to evaluate and improve the security of SCADA systems, using a basic prototype of EFACEC's ScateX# SCADA system, following both a theoretical and practical approach. For the theoretical approach, a list of the most commonly adopted ICS (Industrial Control Systems) and IT standards is compiled, and then sets of a generic client's cybersecurity requisites are analyzed and confronted with the prototype's specifications. A study of the system's architecture is also performed to identify vulnerabilities and non-compliances with both the client's requisites and the standards and, for the identified vulnerabilities, corrective and mitigation measures are suggested. For the practical approach, a threat model was developed to help identify desirable assets on SCADA systems and possible attack vectors that could allow access to such assets. Penetration tests were performed on the prototype in order to validate the attack vectors, to evaluate compliance, and to provide evidence of the effectiveness of the corrective measures

    Fingerprinting cyber physical systems: A physics-based approach

    Get PDF
    Industrial Control System (ICS) networks used in critical infrastructure networks like the power grid represent a different set of security challenges when compared to traditional IT networks. The electric power grid comprises several components most of which are critical physical devices and have to be safeguarded to ensure reliable operation. The devices in the field are remotely controlled via the control network of the plant from the control center. The distributed nature of these networks makes it almost impossible to perform the same common security practices as done in traditional IT networks (e.g., regular security upgrades). It is partially due to the fact that these legacy devices are incapable of supporting future upgrades and because of the remote location of these devices. Cyber attacks on an electric grid can originate from an external intruder who has gained access to the control network or from a disgruntled employee who already has access to the network. Among several possible attacks on an electric grid, this work specifically proposes to tackle the false data injection issue during control command requests to the field devices in the substation. The thesis work proposes to help to ensure the authenticity of the responses by analyzing the observed response against the fingerprints developed by operation times associated with each device in the plant. Also, in this work, the accuracy of the proposed fingerprinting technique is evaluated from a dataset generated from controlled lab experiments.M.S

    Impact of the Shodan Computer Search Engine on Internet-facing Industrial Control System Devices

    Get PDF
    The Shodan computer search engine crawls the Internet attempting to identify any connected device. Using Shodan, researchers identified thousands of Internet-facing devices associated with industrial controls systems (ICS). This research examines the impact of Shodan on ICS security, evaluating Shodan\u27s ability to identify Internet-connected ICS devices and assess if targeted attacks occur as a result of Shodan identification. In addition, this research evaluates the ability to limit device exposure to Shodan through service banner manipulation. Shodan\u27s impact was evaluated by deploying four high-interaction, unsolicited honeypots over a 55 day period, each configured to represent Allen-Bradley programmable logic controllers (PLC). All four honeypots were successfully indexed and identifiable via the Shodan web interface in less than 19 days. Despite being indexed, there was no increased network activity or targeted ICS attacks. Although results indicate Shodan is an effective reconnaissance tool, results contrast claims of its use to broadly identify and target Internet-facing ICS devices. Additionally, the service banner for two PLCs were modified to evaluate the impact on Shodan indexing capabilities. Findings demonstrated service banner manipulation successfully limited device exposure from Shodan queries
    corecore