73,765 research outputs found

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Potential applications of geospatial information systems for planning and managing aged care services in Australia

    Get PDF
    [Abstract]: This paper discusses the potential applications of Geospatial Information Technology (GITs) to assist in planning and managing aged care programs in Australia. Aged care is complex due to the numbers of participants at all levels of including planning of services, investing in capacity, funding, providing services, auditing, monitoring quality, and in accessing and using facilities and services. There is a vast array of data spread across the entities that are joined to aged care. The decision-making process for investment in capacity and service provision might be aided by technology including GIT. This is also expected to assist in managing and analysing the vast amount of demographic, geographic, socio-economic and behavioral data that might indicate current and future demand for services the aged and frail-aged population. Mapping spatio-temporal changes in near real time can assist in the successful planning and management of aged care programs. Accurate information on the location of aged care services centres and mapping the special needs of clients and their service needs may assist in monitoring access to services and assist in identifying areas where there are logistic challenges for accessing services to meet needs. GIT can also identifying migrations of aged people and of the cohorts of the population who are likely to be the next wave of clients for aged care services. GITs include remote sensing, geographic information systems (GIS) and global positioning systems (GPS) technologies, which can be used to develop a user friendly digital system for monitoring, evaluating and planning aged care and community care in Australia. Whilst remote sensing data can provide current spatiotemporal inventory of features such as locations of carer services, infrastructure, on a consistent and continuous coordinate system, a GIS can assist in storing, cross analysing, modeling and mapping of spatial data pertaining to the needs of the older people. GITs can assist in the development of a single one-stop digital database which will prove a better model for managing aged care in Australia. GIT will also be a component of technologies such as activity monitors to provide tracking functionality. This will assist in tracking dementia sufferers who may be prone to wandering and be exposed to risk

    Potential of using remote sensing techniques for global assessment of water footprint of crops

    Get PDF
    Remote sensing has long been a useful tool in global applications, since it provides physically-based, worldwide, and consistent spatial information. This paper discusses the potential of using these techniques in the research field of water management, particularly for ‘Water Footprint’ (WF) studies. The WF of a crop is defined as the volume of water consumed for its production, where green and blue WF stand for rain and irrigation water usage, respectively. In this paper evapotranspiration, precipitation, water storage, runoff and land use are identified as key variables to potentially be estimated by remote sensing and used for WF assessment. A mass water balance is proposed to calculate the volume of irrigation applied, and green and blue WF are obtained from the green and blue evapotranspiration components. The source of remote sensing data is described and a simplified example is included, which uses evapotranspiration estimates from the geostationary satellite Meteosat 9 and precipitation estimates obtained with the Climatic Prediction Center Morphing Technique (CMORPH). The combination of data in this approach brings several limitations with respect to discrepancies in spatial and temporal resolution and data availability, which are discussed in detail. This work provides new tools for global WF assessment and represents an innovative approach to global irrigation mapping, enabling the estimation of green and blue water use
    • …
    corecore