1,180 research outputs found

    Digital Cognitive Companions for Marine Vessels : On the Path Towards Autonomous Ships

    Get PDF
    As for the automotive industry, industry and academia are making extensive efforts to create autonomous ships. The solutions for this are very technology-intense. Many building blocks, often relying on AI technology, need to work together to create a complete system that is safe and reliable to use. Even when the ships are fully unmanned, humans are still foreseen to guide the ships when unknown situations arise. This will be done through teleoperation systems.In this thesis, methods are presented to enhance the capability of two building blocks that are important for autonomous ships; a positioning system, and a system for teleoperation.The positioning system has been constructed to not rely on the Global Positioning System (GPS), as this system can be jammed or spoofed. Instead, it uses Bayesian calculations to compare the bottom depth and magnetic field measurements with known sea charts and magnetic field maps, in order to estimate the position. State-of-the-art techniques for this method typically use high-resolution maps. The problem is that there are hardly any high-resolution terrain maps available in the world. Hence we present a method using standard sea-charts. We compensate for the lower accuracy by using other domains, such as magnetic field intensity and bearings to landmarks. Using data from a field trial, we showed that the fusion method using multiple domains was more robust than using only one domain. In the second building block, we first investigated how 3D and VR approaches could support the remote operation of unmanned ships with a data connection with low throughput, by comparing respective graphical user interfaces (GUI) with a Baseline GUI following the currently applied interfaces in such contexts. Our findings show that both the 3D and VR approaches outperform the traditional approach significantly. We found the 3D GUI and VR GUI users to be better at reacting to potentially dangerous situations than the Baseline GUI users, and they could keep track of the surroundings more accurately. Building from this, we conducted a teleoperation user study using real-world data from a field-trial in the archipelago, where the users should assist the positioning system with bearings to landmarks. The users experienced the tool to give a good overview, and despite the connection with the low throughput, they managed through the GUI to significantly improve the positioning accuracy

    Transport 2040 : analysis of technical developments in transport - maritime, air, rail and road

    Get PDF
    A number of technical and socio-technical factors are driving the development and adoption of automation. The report, Transport 2040: Automation, Technology, Employment – The Future of Work, provided an overview of the most important trends forecasted to affect the global transport sector by 2040. This current report provides additional details of that assessment. The research conducted is guided by a transport-technology analytical model that provides a structure for a systematic review across different modes of transport. This report reviews, in particular, the transportation technology through the lens of transport vehicles (e.g. ships, trucks, trains, aircraft) and the technical infrastructure that is needed for the operation of the vehicle (e.g. waterways and harbours, roads, railway tracks and freight terminals, as well as controlled airspace and airports).https://commons.wmu.se/lib_reports/1076/thumbnail.jp

    Research on safety management of Maritime Autonomous Surface Ships

    Get PDF

    Identification and challenge of human factors under the trend of MASS development

    Get PDF

    Monitoring of sea-ice-atmosphere interface in the proximity of arctic tidewater glaciers: The contribution of marine robotics

    Get PDF
    The Svalbard archipelago, with its partially closed waters influenced by both oceanic conditions and large tidal glaciers, represents a prime target for understanding the effects of ongoing climate change on glaciers, oceans, and ecosystems. An understanding of the role played by tidewater glaciers in marine primary production is still affected by a lack of data from close proximity to glacier fronts, to which, for safety reasons, manned surface vessels cannot get too close. In this context, autonomous marine vehicles can play a key role in collecting high quality data in dangerous interface areas. In particular, the contribution given by light, portable, and modular marine robots is discussed in this paper. The state-of-the-art of technology and of operating procedures is established on the basis of the experience gained in campaigns carried out by Italian National Research Council (CNR) robotic researchers in Ny-Alesund, Svalbard Islands, in 2015, 2017, and 2018 respectively. The aim was to demonstrate the capability of an Unmanned Semi-Submersible Vehicle (USSV): (i) To collect water samples in contact with the front of a tidewater glacier; (ii) to work in cooperation with Unmanned Aerial Vehicles (UAV) for sea surface and air column characterisation in the proximity of the fronts of the glaciers; and (iii) to perform, when equipped with suitable tools and instruments, repetitive sampling of water surface as well as profiling the parameters of the water and air column close to the fronts of the tidewater glaciers. The article also reports the issues encountered in navigating in the middle of bergy bits and growlers as well as the problems faced in using some sensors at high latitudes

    Interoperability Among Unmanned Maritime Vehicles: Review and First In-field Experimentation

    Get PDF
    Complex maritime missions, both above and below the surface, have traditionally been carried out by manned surface ships and submarines equipped with advanced sensor systems. Unmanned Maritime Vehicles (UMVs) are increasingly demonstrating their potential for improving existing naval capabilities due to their rapid deployability, easy scalability, and high reconfigurability, offering a reduction in both operational time and cost. In addition, they mitigate the risk to personnel by leaving the man far-from-the-risk but in-the-loop of decision making. In the long-term, a clear interoperability framework between unmanned systems, human operators, and legacy platforms will be crucial for effective joint operations planning and execution. However, the present multi-vendor multi-protocol solutions in multi-domain UMVs activities are hard to interoperate without common mission control interfaces and communication protocol schemes. Furthermore, the underwater domain presents significant challenges that cannot be satisfied with the solutions developed for terrestrial networks. In this paper, the interoperability topic is discussed blending a review of the technological growth from 2000 onwards with recent authors' in-field experience; finally, important research directions for the future are given. Within the broad framework of interoperability in general, the paper focuses on the aspect of interoperability among UMVs not neglecting the role of the human operator in the loop. The picture emerging from the review demonstrates that interoperability is currently receiving a high level of attention with a great and diverse deal of effort. Besides, the manuscript describes the experience from a sea trial exercise, where interoperability has been demonstrated by integrating heterogeneous autonomous UMVs into the NATO Centre for Maritime Research and Experimentation (CMRE) network, using different robotic middlewares and acoustic modem technologies to implement a multistatic active sonar system. A perspective for the interoperability in marine robotics missions emerges in the paper, through a discussion of current capabilities, in-field experience and future advanced technologies unique to UMVs. Nonetheless, their application spread is slowed down by the lack of human confidence. In fact, an interoperable system-of-systems of autonomous UMVs will require operators involved only at a supervisory level. As trust develops, endorsed by stable and mature interoperability, human monitoring will be diminished to exploit the tremendous potential of fully autonomous UMVs

    Study on the applicability of STCW Convention to MASS and updating ETO’s standard of competence

    Get PDF

    Research on improving maritime emergency management based on AI and VR in Tianjin Port

    Get PDF
    • …
    corecore