514 research outputs found

    Thin Sea-Ice Thickness as Inferred from Passive Microwave and In Situ Observations

    Get PDF
    Since microwave radiometric signals from sea-ice strongly reflect physical conditions of a layer near the ice surface, a relationship of brightness temperature with thickness is possible especially during the early stages of ice growth. Sea ice is most saline during formation stage and as the salinity decreases with time while at the same time the thickness of the sea ice increases, a corresponding change in the dielectric properties and hence the brightness temperature may occur. This study examines the extent to which the relationships of thickness with brightness temperature (and with emissivity) hold for thin sea-ice, approximately less than 0.2 -0.3 m, using near concurrent measurements of sea-ice thickness in the Sea of Okhotsk from a ship and passive microwave brightness temperature data from an over-flying aircraft. The results show that the brightness temperature and emissivity increase with ice thickness for the frequency range of 10-37 GHz. The relationship is more pronounced at lower frequencies and at the horizontal polarization. We also established an empirical relationship between ice thickness and salinity in the layer near the ice surface from a field experiment, which qualitatively support the idea that changes in the near-surface brine characteristics contribute to the observed thickness-brightness temperature/emissivity relationship. Our results suggest that for thin ice, passive microwave radiometric signals contain, ice thickness information which can be utilized in polar process studies

    Applications of Microwaves to Remote Sensing of Terrain

    Get PDF
    A survey and study was conducted to define the role that microwaves may play in the measurement of a variety of terrain-related parameters. The survey consisted of discussions with many users and researchers in the field of remote sensing. In addition, a survey questionnaire was prepared and replies were solicited from these and other users and researchers. The results of the survey, and associated bibliography, were studied and conclusions were drawn as to the usefulness of radiometric systems for remote sensing of terrain

    Validation of SMOS sea ice thickness retrieval in the northern Baltic Sea

    Get PDF
    The Soil Moisture and Ocean Salinity (SMOS) mission observes brightness temperatures at a low microwave frequency of 1.4 GHz (L-band) with a daily coverage of the polar regions. L-band radiometry has been shown to provide information on the thickness of thin sea ice. Here, we apply a new emission model that has previously been used to investigate the impact of snow on thick Arctic sea ice. The model has not yet been used to retrieve ice thickness. In contrast to previous SMOS ice thickness retrievals, the new model allows us to include a snow layer in the brightness temperature simulations. Using ice thickness estimations from satellite thermal imagery, we simulate brightness temperatures during the ice growth season 2011 in the northern Baltic Sea. In both the simulations and the SMOS observations, brightness temperatures increase by more than 20 K, most likely due to an increase of ice thickness. Only if we include the snow in the model, the absolute values of the simulations and the observations agree well (mean deviations below 3.5 K). In a second comparison, we use high-resolution measurements of total ice thickness (sum of ice and snow thickness) from an electromagnetic (EM) sounding system to simulate brightness temperatures for 12 circular areas. While the SMOS observations and the simulations that use the EM modal ice thickness are highly correlated (r2=0.95), the simulated brightness temperatures are on average 12 K higher than observed by SMOS. This would correspond to an 8-cm overestimation of the modal ice thickness by the SMOS retrieval. In contrast, if the simulations take into account the shape of the EM ice thickness distributions (r2=0.87), the mean deviation between simulated and observed brightness temperatures is below 0.1 K

    Advanced methods for earth observation data synergy for geophysical parameter retrieval

    Get PDF
    The first part of the thesis focuses on the analysis of relevant factors to estimate the response time between satellite-based and in-situ soil moisture (SM) using a Dynamic Time Warping (DTW). DTW was applied to the SMOS L4 SM, and was compared to in-situ root-zone SM in the REMEDHUS network in Western Spain. The method was customized to control the evolution of time lag during wetting and drying conditions. Climate factors in combination with crop growing seasons were studied to reveal SM-related processes. The heterogeneity of land use was analyzed using high-resolution images of NDVI from Sentinel-2 to provide information about the level of spatial representativity of SMOS data to each in-situ station. The comparison of long-term precipitation records and potential evapotranspiration allowed estimation of SM seasons describing different SM conditions depending on climate and soil properties. The second part of the thesis focuses on data-driven methods for sea ice segmentation and parameter retrieval. A Bayesian framework is employed to segment sets of multi-source satellite data. The Bayesian unsupervised learning algorithm allows to investigate the ‘hidden link’ between multiple data. The statistical properties are accounted for by a Gaussian Mixture Model, and the spatial interactions are reflected using Hidden Markov Random Fields. The algorithm segments spatial data into a number of classes, which are represented as a latent field in physical space and as clusters in feature space. In a first application, a two-step probabilistic approach based on Expectation-Maximization and the Bayesian segmentation algorithm was used to segment SAR images to discriminate surface water from sea ice types. Information on surface roughness is contained in the radar backscattering images which can be - in principle - used to detect melt ponds and to estimate high-resolution sea ice concentration (SIC). In a second study, the algorithm was applied to multi-incidence angle TB data from the SMOS L1C product to harness the its sensitivity to thin ice. The spatial patterns clearly discriminate well-determined areas of open water, old sea ice and a transition zone, which is sensitive to thin sea ice thickness (SIT) and SIC. In a third application, SMOS and the AMSR2 data are used to examine the joint effect of CIMR-like observations. The information contained in the low-frequency channels allows to reveal ranges of thin sea ice, and thicker ice can be determined from the relationship between the high-frequency channels and changing conditions as the sea ice ages. The proposed approach is suitable for merging large data sets and provides metrics for class analysis, and to make informed choices about integrating data from future missions into sea ice products. A regression neural network approach was investigated with the goal to infer SIT using TB data from the Flexible Microwave Payload 2 (FMPL-2) of the FSSCat mission. Two models - covering thin ice up to 0.6m and the full-range of SIT - were trained on Arctic data using ground truth data derived from the SMOS and Cryosat-2. This work demonstrates that moderate-cost CubeSat missions can provide valuable data for applications in Earth observation.La primera parte de la tesis se centra en el análisis de los factores relevantes para estimar el tiempo de respuesta entre la humedad del suelo (SM) basada en el satélite y la in-situ, utilizando una deformación temporal dinámica (DTW). El DTW se aplicó al SMOS L4 SM, y se comparó con la SM in-situ en la red REMEDHUS en el oeste de España. El método se adaptó para controlar la evolución del desfase temporal durante diferentes condiciones de humedad y secado. Se estudiaron los factores climáticos en combinación con los períodos de crecimiento de los cultivos para revelar los procesos relacionados con la SM. La heterogeneidad del uso del suelo se analizó utilizando imágenes de alta resolución de NDVI de Sentinel-2 para proporcionar información sobre el nivel de representatividad espacial de los datos de SMOS a cada estación in situ. La comparación de los patrones de precipitación a largo plazo y la evapotranspiración potencial permitió estimar las estaciones de SM que describen diferentes condiciones de SM en función del clima y las propiedades del suelo. La segunda parte de esta tesis se centra en métodos dirigidos por datos para la segmentación del hielo marino y la obtención de parámetros. Se emplea un método de inferencia bayesiano para segmentar conjuntos de datos satelitales de múltiples fuentes. El algoritmo de aprendizaje bayesiano no supervisado permite investigar el “vínculo oculto” entre múltiples datos. Las propiedades estadísticas se contabilizan mediante un modelo de mezcla gaussiana, y las interacciones espaciales se reflejan mediante campos aleatorios ocultos de Markov. El algoritmo segmenta los datos espaciales en una serie de clases, que se representan como un campo latente en el espacio físico y como clústeres en el espacio de las variables. En una primera aplicación, se utilizó un enfoque probabilístico de dos pasos basado en la maximización de expectativas y el algoritmo de segmentación bayesiano para segmentar imágenes SAR con el objetivo de discriminar el agua superficial de los tipos de hielo marino. La información sobre la rugosidad de la superficie está contenida en las imágenes de backscattering del radar, que puede utilizarse -en principio- para detectar estanques de deshielo y estimar la concentración de hielo marino (SIC) de alta resolución. En un segundo estudio, el algoritmo se aplicó a los datos TB de múltiples ángulos de incidencia del producto SMOS L1C para aprovechar su sensibilidad al hielo fino. Los patrones espaciales discriminan claramente áreas bien determinadas de aguas abiertas, hielo marino viejo y una zona de transición, que es sensible al espesor del hielo marino fino (SIT) y al SIC. En una tercera aplicación, se utilizan los datos de SMOS y de AMSR2 para examinar el efecto conjunto de las observaciones tipo CIMR. La información contenida en los canales de baja frecuencia permite revelar rangos de hielo marino delgado, y el hielo más grueso puede determinarse a partir de la relación entre los canales de alta frecuencia y las condiciones cambiantes a medida que el hielo marino envejece. El enfoque propuesto es adecuado para fusionar grandes conjuntos de datos y proporciona métricas para el análisis de clases, y para tomar decisiones informadas sobre la integración de datos de futuras misiones en los productos de hielo marino. Se investigó un enfoque de red neuronal de regresión con el objetivo de inferir el SIT utilizando datos de TB de la carga útil de microondas flexible 2 (FMPL-2) de la misión FSSCat. Se entrenaron dos modelos - que cubren el hielo fino hasta 0.6 m y el rango completo del SIT - con datos del Ártico utilizando datos de “ground truth” derivados del SMOS y del Cryosat-2. Este trabajo demuestra que las misiones CubeSat de coste moderado pueden proporcionar datos valiosos para aplicaciones de observación de la Tierra.Postprint (published version

    Bayesian unsupervised machine learning approach to segment arctic sea ice using SMOS data

    Get PDF
    Microwave radiometry at L-band is sensitive to sea ice thickness (SIT) up to ~ 60 cm. Current methods to infer SIT depend on ice-physical properties and data provided by the ESA’s Soil Moisture and Ocean Salinity (SMOS) mission. However, retrieval accuracy is limited due to seasonally and regionally variable surface conditions during the formation and melting of sea ice. In this work, Arctic sea ice is segmented using a Bayesian unsupervised learning algorithm aiming to recognize spatial patterns by harnessing multi-incidence angle brightness temperature observations. The approach considers both statistical characteristics and spatial correlations of the observations. The temporal stability and separability of classes are analyzed to distinguish ambiguous from well-determined regions. Model uncertainty is quantified from class membership probabilities using information entropy. The presented approach opens up a new scope to improve current SIT retrieval algorithms, and can be particularly beneficial to investigate merged satellite products.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No.713673. It was also funded through the award “Unidad de Excelencia María de Maeztu” MDM-2016-0600, by the Spanish Ministry of Science and Innovation through the project “L-band” ESP2017-89463-C3-2-R, and the project “Sensing with Pioneering Opportunistic Techniques (SPOT)” RTI2018-099008-B-C21/AEI/10.13039/501100011033.Peer ReviewedPostprint (published version

    SMOS sea ice thickness - a review and way forward

    Get PDF
    The sea ice on the oceans in the Arctic and Antarctic is a relatively thin blanket that significantly influences the exchange between the ocean and the atmosphere. The sea ice thickness is a major parameter, which is of great importance for diagnosis and prediction. Determining seasonal and interannual variations in sea ice thickness was the primary objective of ESA's CryoSat Earth Explorer mission. ESA's second Earth Explorer mission, SMOS, provides L-band brightness temperature data that can also be used to infer the thickness of the sea ice, although that was not its primary objective. Both missions complement each other strongly in terms of spatiotemporal sampling and their sensitivity to different ice thickness regimes. In order to further improve the synergistic use of low-frequency radiometric data for sea ice applications, it is imperative to better characterize the uncertainties and covariances associated with the retrieval. A key factor is a thorough understanding of the physical processes that determine the emissivity of sea ice in order to improve the forward model used for retrieval. A thermodynamic model is used to estimate the vertical temperature profile through the snow and sea ice. Therefore, additional meteorological data such as from atmospheric reanalyses and parameterizations of snow and sea ice properties must be taken into account. Natural sea ice is not a homogeneous medium of uniform sea ice and snow thickness, but can only be described by statistical distribution functions on different spatial scales. Thin ice and open water in leads within the compact pack ice also have a significant influence on the brightness temperature measured by SMOS. In order to take all these effects into account, the forward model or the observation operator must be of the appropriate complexity. The inversion to determine the geophysical sea ice parameters can be optimized with a-priori information and parameterizations as well as with information from other satellite sensors. The presentation will focus on a review of the current retrieval method used to generate the AWI-ESA level 3 and level 4 Sea Ice Thickness products and the way forward to improve the emissivity model and to define a common basis metrics validation to assess algorithms evolution considering that in-situ validation data is only sparsely available

    Polar Environmental Monitoring

    Get PDF
    The present and projected benefits of the polar regions were reviewed and then translated into information needs in order to support the array of polar activities anticipated. These needs included measurement sensitivities for polar environmental data (ice/snow, atmosphere, and ocean data for integrated support) and the processing and delivery requirements which determine the effectiveness of environmental services. An assessment was made of how well electromagnetic signals can be converted into polar environmental information. The array of sensor developments in process or proposed were also evaluated as to the spectral diversity, aperture sizes, and swathing capabilities available to provide these measurements from spacecraft, aircraft, or in situ platforms. Global coverage and local coverage densification options were studied in terms of alternative spacecraft trajectories and aircraft flight paths
    corecore