180 research outputs found

    Large-Scale Urban Impervous Surfaces Estimation Through Incorporating Temporal and Spatial Information into Spectral Mixture Analysis

    Get PDF
    With rapid urbanization, impervious surfaces, a major component of urbanized areas, have increased concurrently. As a key indicator of environmental quality and urbanization intensity, an accurate estimation of impervious surfaces becomes essential. Numerous automated estimation approaches have been developed during the past decades. Among them, spectral mixture analysis (SMA) has been recognized as a powerful and widely employed technique. While SMA has proven valuable in impervious surface estimation, effects of temporal and spectral variability have not been successfully addressed. In particular, impervious surface estimation is likely to be sensitive to seasonal changes, majorly due to the shadowing effects of vegetation canopy in summer and the confusion between impervious surfaces and soil in winter. Moreover, endmember variability and multi-collinearity have adversely impacted the accurate estimation of impervious surface distribution with coarse resolution remote sensing imagery. Therefore, the main goal of this research is to incorporate temporal and spatial information, as well as geostatistical approaches, into SMA for improving large-scale urban impervious surface estimation. Specifically, three new approaches have been developed in this dissertation to improve the accuracy of large-scale impervious surface estimation. First, a phenology based temporal mixture analysis was developed to address seasonal sensitivity and spectral confusion issues with the multi-temporal MODIS NDVI data. Second, land use land cover information assisted temporal mixture analysis was proposed to handle the issue of endmember class variability through analyzing the spatial relationship between endmembers and surrounding environmental and socio-economic factors in support of the selection of an appropriate number and types of endmember classes. Third, a geostatistical temporal mixture analysis was developed to address endmember spectral variability by generating per-pixel spatial varied endmember spectra. Analysis results suggest that, first, with the proposed phenology based temporal mixture analysis, a significant phenophase differences between impervious surfaces and soil can be extracted and employed in unmxing analysis, which can facilitate their discrimination and successfully address the issue of seasonal sensitivity and spectral confusion. Second, with the analyzed spatial distribution relationship between endmembers and environmental and socio-economic factors, endmember classes can be identified with clear physical meanings throughout the whole study area, which can effectively improve the unmixing analysis results. Third, the use of the spatially varying per-pixel endmember generated from the geostatistical approach can effectively consider the endmember spectra spatial variability, overcome the endmember within-class variability issue, and improve the accuracy of impervious surface estimates. Major contributions of this research can be summarized as follows. First, instead of Landsat Thematic Mapper (TM) images, MODIS imageries with large geographic coverage and high temporal resolution have been successfully employed in this research, thus making timely and regional estimation of impervious surfaces possible. Second, this research proves that the incorporation of geographic knowledge (e.g. phonological knowledge, spatial interaction, and geostatistics) can effectively improve the spectral mixture analysis model, and therefore improve the estimation accuracy of urban impervious surfaces

    Combining Field and Imaging Spectroscopy to Map Soil Organic Carbon in a Semiarid Environment

    Get PDF
    Semiarid regions are especially vulnerable to climate change and human-induced land-use changes and are of major importance in the context of necessary carbon sequestration and ongoing land degradation. Topsoil properties, such as soil carbon content, provide valuable indicators to these processes, and can be mapped using imaging spectroscopy (IS). In semiarid regions, this poses difficulties because models are needed that can cope with varying land surface and soil conditions, consider a partial vegetation coverage, and deal with usually low soil organic carbon (SOC) contents. We present an approach that aims at addressing these difficulties by using a combination of field and IS to map SOC in an extensively used semiarid ecosystem. In hyperspectral imagery of the HyMap sensor, the influence of nonsoil materials, i.e., vegetation, on the spectral signature of soil dominated image pixels was reduced and a residual soil signature was calculated. The proposed approach allowed this procedure up to a vegetation coverage of 40% clearly extending the mapping capability. SOC quantities are predicted by applying a spectral feature-based SOC prediction model to image data of residual soil spectra. With this approach, we could significantly increase the spatial extent for which SOC could be predicted with a minimal influence of a vegetation signal compared to previous approaches where the considered area was limited to a maximum of, e.g., 10% vegetation coverage. As a regional example, the approach was applied to a 320 km2 area in the Albany Thicket Biome, South Africa, where land cover and landuse changes have occurred due to decades of unsustainable land management. In the generated maps, spatial SOC patterns were interpreted and linked to geomorphic features and land surface processes, i.e., areas of soil erosion. It was found that the chosen approach supported the extraction of soil-related spectral image information in the semiarid region with highly varying land cover. However, the quantitative prediction of SOC contents revealed a lack in absolute accuracy

    Combining Field and Imaging Spectroscopy to Map Soil Organic Carbon in a Semiarid Environment

    Get PDF
    Semiarid regions are especially vulnerable to climate change and human-induced land-use changes and are of major importance in the context of necessary carbon sequestration and ongoing land degradation. Topsoil properties, such as soil carbon content, provide valuable indicators to these processes, and can be mapped using imaging spectroscopy (IS). In semiarid regions, this poses difficulties because models are needed that can cope with varying land surface and soil conditions, consider a partial vegetation coverage, and deal with usually low soil organic carbon (SOC) contents. We present an approach that aims at addressing these difficulties by using a combination of field and IS to map SOC in an extensively used semiarid ecosystem. In hyperspectral imagery of the HyMap sensor, the influence of nonsoil materials, i.e., vegetation, on the spectral signature of soil dominated image pixels was reduced and a residual soil signature was calculated. The proposed approach allowed this procedure up to a vegetation coverage of 40% clearly extending the mapping capability. SOC quantities are predicted by applying a spectral feature-based SOC prediction model to image data of residual soil spectra. With this approach, we could significantly increase the spatial extent for which SOC could be predicted with a minimal influence of a vegetation signal compared to previous approaches where the considered area was limited to a maximum of, e.g., 10% vegetation coverage. As a regional example, the approach was applied to a 320 km2 area in the Albany Thicket Biome, South Africa, where land cover and landuse changes have occurred due to decades of unsustainable land management. In the generated maps, spatial SOC patterns were interpreted and linked to geomorphic features and land surface processes, i.e., areas of soil erosion. It was found that the chosen approach supported the extraction of soil-related spectral image information in the semiarid region with highly varying land cover. However, the quantitative prediction of SOC contents revealed a lack in absolute accuracy

    Mediterranean-wide Green Vegetation Abundance for Land Degradation Assessment Derived from AVHRR NDVI and Surface Temperature 1989 to 2005

    Get PDF
    NOAA AVHRR data stemming from the MEDOKADS archive and ranging from 1989 to 2005 was processed and decomposed into their fractions of the vegetated, non-vegetated and the so called ¿cold¿ endmember. Decomposition occurred via Linear Unmixing within a triangle spanned up by NDVI (y-axis) and surface temperature (x-axis), separately for each of the 612 10-day composites. Endmembers were derived statistically using percentiles and the inverse relationship between NDVI and Ts. The cold endmember was fixed at -20 degrees Celsius, the vegetated endmember at NDVI = 0.7, the latter was then empirically corrected for illumination effects. Linear Unmixing occurred for the whole Mediterranean area, separately for a western and eastern window. Outcomes are the vegetation abundance, soil abundance and ¿cold¿ abundance, indicating the individual coverage of a pixel by each of these. The vegetation abundance was re-scaled to the so-called Grenn Vegetation Fraction (GVF), re-distributing the ¿cold¿ abundance on vegetation and soil abundance proportionally. Unmixing led to a higher stability of GVF data in comparison to NDVI data with regard to atmospheric effects. The data was post-processed for missing values and outliers and it was filtered. The GVF shows close parallelism on several test sites in comparison to a re-scaled NDVI within the endmember limits. The positive effect of the cold abundance, which is amongst other accounting for negative effects from poor atmospheric conditions and which was used to improve the GVF, could be clearly shown. Comparison with high and low resolution SPOT data shows a linear relationship and higher values for GVF. Squared GVF values were found to be closely correlated with independently derived high and low resolution vegetation cover (fCover), confirming this relationship known from literature. Coefficients of determination (R2), slope and offset of linear relations between squared GVF on one side and the two validation data sets on the other side were 0.69, 0.91, 0.07 and 0.58, 1.27, 0.06, respectively. In addition to the ¿per se¿ value of the derived abundances, validation results indicate that squared GVF may be used as approximation for vegetation cover.JRC.H.7-Land management and natural hazard

    Assessing Global Surface Water Inundation Dynamics Using Combined Satellite Information from SMAP, AMSR2 and Landsat

    Get PDF
    A method to assess global land surface water (fw) inundation dynamics was developed by exploiting the enhanced fw sensitivity of L-band (1.4 GHz) passive microwave observations from the Soil Moisture Active Passive (SMAP) mission. The L-band fw (fw(sub LBand)) retrievals were derived using SMAP H-polarization brightness temperature (Tb) observations and predefined L-band reference microwave emissivities for water and land endmembers. Potential soil moisture and vegetation contributions to the microwave signal were represented from overlapping higher frequency (Tb) observations from AMSR2. The resulting (fw(sub LBand)) global record has high temporal sampling (1-3 days) and 36-km spatial resolution. The (fw(sub LBand)) annual averages corresponded favourably (R=0.84, p<0.001) with a 250-m resolution static global water map (MOD44W) aggregated at the same spatial scale, while capturing significant inundation variations worldwide. The monthly (fw(sub LBand)) averages also showed seasonal inundation changes consistent with river discharge records within six major US river basins. An uncertainty analysis indicated generally reliable (fw(sub LBand)) performance for major land cover areas and under low to moderate vegetation cover, but with lower accuracy for detecting water bodies covered by dense vegetation. Finer resolution (30-m) (fw(sub LBand)) results were obtained for three sub-regions in North America using an empirical downscaling approach and ancillary global Water Occurrence Dataset (WOD) derived from the historical Landsat record. The resulting 30-m (fw(sub LBand)) retrievals showed favourable spatial accuracy for water (70.71%) and land (98.99%) classifications and seasonal wet and dry periods when compared to independent water maps derived from Landsat-8 imagery. The new (fw(sub LBand)) algorithms and continuing SMAP and AMSR2 operations provide for near real-time, multi-scale monitoring of global surface water inundation dynamics and potential flood risk

    Comparison of Methods for Modeling Fractional Cover Using Simulated Satellite Hyperspectral Imager Spectra

    Get PDF
    Remotely sensed data can be used to model the fractional cover of green vegetation (GV), non-photosynthetic vegetation (NPV), and soil in natural and agricultural ecosystems. NPV and soil cover are difficult to estimate accurately since absorption by lignin, cellulose, and other organic molecules cannot be resolved by broadband multispectral data. A new generation of satellite hyperspectral imagers will provide contiguous narrowband coverage, enabling new, more accurate, and potentially global fractional cover products. We used six field spectroscopy datasets collected in prior experiments from sites with partial crop, grass, shrub, and low-stature resprouting tree cover to simulate satellite hyperspectral data, including sensor noise and atmospheric correction artifacts. The combined dataset was used to compare hyperspectral index-based and spectroscopic methods for estimating GV, NPV, and soil fractional cover. GV fractional cover was estimated most accurately. NPV and soil fractions were more difficult to estimate, with spectroscopic methods like partial least squares (PLS) regression, spectral feature analysis (SFA), and multiple endmember spectral mixture analysis (MESMA) typically outperforming hyperspectral indices. Using an independent validation dataset, the lowest root mean squared error (RMSE) values were 0.115 for GV using either normalized difference vegetation index (NDVI) or SFA, 0.164 for NPV using PLS, and 0.126 for soil using PLS. PLS also had the lowest RMSE averaged across all three cover types. This work highlights the need for more extensive and diverse fine spatial scale measurements of fractional cover, to improve methodologies for estimating cover in preparation for future hyperspectral global monitoring missions

    Arctic shrub expansion revealed by Landsat-derived multitemporal vegetation cover fractions in the Western Canadian Arctic

    Get PDF
    Warming induced shifts in tundra vegetation composition and structure, including circumpolar expansion of shrubs, modifies ecosystem structure and functioning with potentially global consequences due to feedback mechanisms between vegetation and climate. Satellite-derived vegetation indices indicate widespread greening of the surface, often associated with regional evidence of shrub expansion obtained from long-term ecological monitoring and repeated orthophotos. However, explicitly quantifying shrub expansion across large scales using satellite observations requires characterising the fine-scale mosaic of Arctic vegetation types beyond index-based approaches. Although previous studies have illustrated the potential of estimating fractional cover of various Plant Functional Types (PFTs) from satellite imagery, limited availability of reference data across space and time has constrained deriving fraction cover time series capable of detecting shrub expansion. We applied regression-based unmixing using synthetic training data to build multitemporal machine learning models in order to estimate fractional cover of shrubs and other surface components in the Mackenzie Delta Region for six time intervals between 1984 and 2020. We trained Kernel Ridge Regression (KRR) and Random Forest Regression (RFR) models using Landsat-derived spectral-temporal-metrics and synthetic training data generated from pure class spectra obtained directly from the imagery. Independent validation using very-high-resolution imagery suggested that KRR outperforms RFR, estimating shrub cover with a MAE of 10.6 and remaining surface components with MAEs between 3.0 and 11.2. Canopy-forming shrubs were well modelled across all cover densities, coniferous tree cover tended to be overestimated and differentiating between herbaceous and lichen cover was challenging. Shrub cover expanded by on average + 2.2 per decade for the entire study area and + 4.2 per decade within the low Arctic tundra, while relative changes were strongest in the northernmost regions. In conjunction with shrub expansion, we observed herbaceous plant and lichen cover decline. Our results corroborate the perception of the replacement and homogenisation of Arctic vegetation communities facilitated by the competitive advantage of shrub species under a warming climate. The proposed method allows for multidecadal quantitative estimates of fractional cover at 30 m resolution, initiating new opportunities for mapping past and present fractional cover of tundra PFTs and can help advance our understanding of Arctic shrub expansion within the vast and heterogeneous tundra biome

    Оценка пространственно-временных изменений в зеленой фитомассе аграрной растительности с использованием спектрально-отражательных признаков

    Get PDF
    Выполнена количественная оценка связи между проективным покрытием и значениями вегетационного индекса NDVI для ключевых видов аграрной растительности юга Среднерусской возвышенности: озимой пшеницы, подсолнечника, сои, многолетних трав. Исследование проведено с использованием фактических данных о проективном покрытии растительности агроэкосистем Белгородской област
    corecore