817 research outputs found

    Low-Rank Hypergraph Hashing for Large-Scale Remote Sensing Image Retrieval

    Full text link
    [EN] As remote sensing (RS) images increase dramatically, the demand for remote sensing image retrieval (RSIR) is growing, and has received more and more attention. The characteristics of RS images, e.g., large volume, diversity and high complexity, make RSIR more challenging in terms of speed and accuracy. To reduce the retrieval complexity of RSIR, a hashing technique has been widely used for RSIR, mapping high-dimensional data into a low-dimensional Hamming space while preserving the similarity structure of data. In order to improve hashing performance, we propose a new hash learning method, named low-rank hypergraph hashing (LHH), to accomplish for the large-scale RSIR task. First, LHH employs a l(2-1) norm to constrain the projection matrix to reduce the noise and redundancy among features. In addition, low-rankness is also imposed on the projection matrix to exploit its global structure. Second, LHH uses hypergraphs to capture the high-order relationship among data, and is very suitable to explore the complex structure of RS images. Finally, an iterative algorithm is developed to generate high-quality hash codes and efficiently solve the proposed optimization problem with a theoretical convergence guarantee. Extensive experiments are conducted on three RS image datasets and one natural image dataset that are publicly available. The experimental results demonstrate that the proposed LHH outperforms the existing hashing learning in RSIR tasks.This research was supported in part by the Natural Science Foundation of China under Grant 61673220.Kong, J.; Sun, Q.; Mukherjee, M.; Lloret, J. (2020). Low-Rank Hypergraph Hashing for Large-Scale Remote Sensing Image Retrieval. Remote Sensing. 12(7):1-19. https://doi.org/10.3390/rs1207116411912

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval

    Novel hybrid generative adversarial network for synthesizing image from sketch

    Get PDF
    In the area of sketch-based image retrieval process, there is a potential difference between retrieving the match images from defined dataset and constructing the synthesized image. The former process is quite easier while the latter process requires more faster, accurate, and intellectual decision making by the processor. After reviewing open-end research problems from existing approaches, the proposed scheme introduces a computational framework of hybrid generative adversarial network (GAN) as a solution to address the identified research problem. The model takes the input of query image which is processed by generator module running 3 different deep learning modes of ResNet, MobileNet, and U-Net. The discriminator module processes the input of real images as well as output from generator. With a novel interactive communication between generator and discriminator, the proposed model offers optimal retrieval performance along with an inclusion of optimizer. The study outcome shows significant performance improvement

    Aggregated Deep Local Features for Remote Sensing Image Retrieval

    Get PDF
    Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image retrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g. 50% faster than the current systems.Comment: Published in Remote Sensing. The first two authors have equal contributio

    Graph Relation Network: Modeling Relations Between Scenes for Multilabel Remote-Sensing Image Classification and Retrieval

    Get PDF
    Due to the proliferation of large-scale remote-sensing (RS) archives with multiple annotations, multilabel RS scene classification and retrieval are becoming increasingly popular. Although some recent deep learning-based methods are able to achieve promising results in this context, the lack of research on how to learn embedding spaces under the multilabel assumption often makes these models unable to preserve complex semantic relations pervading aerial scenes, which is an important limitation in RS applications. To fill this gap, we propose a new graph relation network (GRN) for multilabel RS scene categorization. Our GRN is able to model the relations between samples (or scenes) by making use of a graph structure which is fed into network learning. For this purpose, we define a new loss function called scalable neighbor discriminative loss with binary cross entropy (SNDL-BCE) that is able to embed the graph structures through the networks more effectively. The proposed approach can guide deep learning techniques (such as convolutional neural networks) to a more discriminative metric space, where semantically similar RS scenes are closely embedded and dissimilar images are separated from a novel multilabel viewpoint. To achieve this goal, our GRN jointly maximizes a weighted leave-one-out K-nearest neighbors (KNN) score in the training set, where the weight matrix describes the contributions of the nearest neighbors associated with each RS image on its class decision, and the likelihood of the class discrimination in the multilabel scenario. An extensive experimental comparison, conducted on three multilabel RS scene data archives, validates the effectiveness of the proposed GRN in terms of KNN classification and image retrieval. The codes of this article will be made publicly available for reproducible research in the community
    • …
    corecore