3,663 research outputs found

    Remote Sampling with Applications to General Entanglement Simulation

    Full text link
    We show how to sample exactly discrete probability distributions whose defining parameters are distributed among remote parties. For this purpose, von Neumann's rejection algorithm is turned into a distributed sampling communication protocol. We study the expected number of bits communicated among the parties and also exhibit a trade-off between the number of rounds of the rejection algorithm and the number of bits transmitted in the initial phase. Finally, we apply remote sampling to the simulation of quantum entanglement in its most general form possible, when an arbitrary number of parties share systems of arbitrary dimensions on which they apply arbitrary measurements (not restricted to being projective measurements). In case the dimension of the systems and the number of possible outcomes per party is bounded by a constant, it suffices to communicate an expected O(m^2) bits in order to simulate exactly the outcomes that these measurements would have produced on those systems, where m is the number of participants.Comment: 17 pages, 1 figure, 4 algorithms (protocols); Complete generalization of previous paper arXiv:1303.5942 [cs.IT] -- Exact simulation of the GHZ distribution -- by the same author

    Classically entangled optical beams for high-speed kinematic sensing

    Full text link
    Tracking the kinematics of fast-moving objects is an important diagnostic tool for science and engineering. Existing optical methods include high-speed CCD/CMOS imaging, streak cameras, lidar, serial time-encoded imaging and sequentially timed all-optical mapping. Here, we demonstrate an entirely new approach to positional and directional sensing based on the concept of classical entanglement in vector beams of light. The measurement principle relies on the intrinsic correlations existing in such beams between transverse spatial modes and polarization. The latter can be determined from intensity measurements with only a few fast photodiodes, greatly outperforming the bandwidth of current CCD/CMOS devices. In this way, our setup enables two-dimensional real-time sensing with temporal resolution in the GHz range. We expect the concept to open up new directions in photonics-based metrology and sensing.Comment: v2 includes the real-time measurement from the published version. Reference [29] added. Minor experimental details added on page

    Towards a Distributed Quantum Computing Ecosystem

    Full text link
    The Quantum Internet, by enabling quantum communications among remote quantum nodes, is a network capable of supporting functionalities with no direct counterpart in the classical world. Indeed, with the network and communications functionalities provided by the Quantum Internet, remote quantum devices can communicate and cooperate for solving challenging computational tasks by adopting a distributed computing approach. The aim of this paper is to provide the reader with an overview about the main challenges and open problems arising with the design of a Distributed Quantum Computing ecosystem. For this, we provide a survey, following a bottom-up approach, from a communications engineering perspective. We start by introducing the Quantum Internet as the fundamental underlying infrastructure of the Distributed Quantum Computing ecosystem. Then we go further, by elaborating on a high-level system abstraction of the Distributed Quantum Computing ecosystem. Such an abstraction is described through a set of logical layers. Thereby, we clarify dependencies among the aforementioned layers and, at the same time, a road-map emerges

    Energy efficient mining on a quantum-enabled blockchain using light

    Full text link
    We outline a quantum-enabled blockchain architecture based on a consortium of quantum servers. The network is hybridised, utilising digital systems for sharing and processing classical information combined with a fibre--optic infrastructure and quantum devices for transmitting and processing quantum information. We deliver an energy efficient interactive mining protocol enacted between clients and servers which uses quantum information encoded in light and removes the need for trust in network infrastructure. Instead, clients on the network need only trust the transparent network code, and that their devices adhere to the rules of quantum physics. To demonstrate the energy efficiency of the mining protocol, we elaborate upon the results of two previous experiments (one performed over 1km of optical fibre) as applied to this work. Finally, we address some key vulnerabilities, explore open questions, and observe forward--compatibility with the quantum internet and quantum computing technologies.Comment: 25 pages, 5 figure

    Random Numbers Certified by Bell's Theorem

    Full text link
    Randomness is a fundamental feature in nature and a valuable resource for applications ranging from cryptography and gambling to numerical simulation of physical and biological systems. Random numbers, however, are difficult to characterize mathematically, and their generation must rely on an unpredictable physical process. Inaccuracies in the theoretical modelling of such processes or failures of the devices, possibly due to adversarial attacks, limit the reliability of random number generators in ways that are difficult to control and detect. Here, inspired by earlier work on nonlocality based and device independent quantum information processing, we show that the nonlocal correlations of entangled quantum particles can be used to certify the presence of genuine randomness. It is thereby possible to design of a new type of cryptographically secure random number generator which does not require any assumption on the internal working of the devices. This strong form of randomness generation is impossible classically and possible in quantum systems only if certified by a Bell inequality violation. We carry out a proof-of-concept demonstration of this proposal in a system of two entangled atoms separated by approximately 1 meter. The observed Bell inequality violation, featuring near-perfect detection efficiency, guarantees that 42 new random numbers are generated with 99% confidence. Our results lay the groundwork for future device-independent quantum information experiments and for addressing fundamental issues raised by the intrinsic randomness of quantum theory.Comment: 10 pages, 3 figures, 16 page appendix. Version as close as possible to the published version following the terms of the journa

    The Quantum Frontier

    Full text link
    The success of the abstract model of computation, in terms of bits, logical operations, programming language constructs, and the like, makes it easy to forget that computation is a physical process. Our cherished notions of computation and information are grounded in classical mechanics, but the physics underlying our world is quantum. In the early 80s researchers began to ask how computation would change if we adopted a quantum mechanical, instead of a classical mechanical, view of computation. Slowly, a new picture of computation arose, one that gave rise to a variety of faster algorithms, novel cryptographic mechanisms, and alternative methods of communication. Small quantum information processing devices have been built, and efforts are underway to build larger ones. Even apart from the existence of these devices, the quantum view on information processing has provided significant insight into the nature of computation and information, and a deeper understanding of the physics of our universe and its connections with computation. We start by describing aspects of quantum mechanics that are at the heart of a quantum view of information processing. We give our own idiosyncratic view of a number of these topics in the hopes of correcting common misconceptions and highlighting aspects that are often overlooked. A number of the phenomena described were initially viewed as oddities of quantum mechanics. It was quantum information processing, first quantum cryptography and then, more dramatically, quantum computing, that turned the tables and showed that these oddities could be put to practical effect. It is these application we describe next. We conclude with a section describing some of the many questions left for future work, especially the mysteries surrounding where the power of quantum information ultimately comes from.Comment: Invited book chapter for Computation for Humanity - Information Technology to Advance Society to be published by CRC Press. Concepts clarified and style made more uniform in version 2. Many thanks to the referees for their suggestions for improvement

    From Quantum Optics to Quantum Technologies

    Full text link
    Quantum optics is the study of the intrinsically quantum properties of light. During the second part of the 20th century experimental and theoretical progress developed together; nowadays quantum optics provides a testbed of many fundamental aspects of quantum mechanics such as coherence and quantum entanglement. Quantum optics helped trigger, both directly and indirectly, the birth of quantum technologies, whose aim is to harness non-classical quantum effects in applications from quantum key distribution to quantum computing. Quantum light remains at the heart of many of the most promising and potentially transformative quantum technologies. In this review, we celebrate the work of Sir Peter Knight and present an overview of the development of quantum optics and its impact on quantum technologies research. We describe the core theoretical tools developed to express and study the quantum properties of light, the key experimental approaches used to control, manipulate and measure such properties and their application in quantum simulation, and quantum computing.Comment: 20 pages, 3 figures, Accepted, Prog. Quant. Ele
    • …
    corecore