313 research outputs found

    funcX: A Federated Function Serving Fabric for Science

    Full text link
    Exploding data volumes and velocities, new computational methods and platforms, and ubiquitous connectivity demand new approaches to computation in the sciences. These new approaches must enable computation to be mobile, so that, for example, it can occur near data, be triggered by events (e.g., arrival of new data), be offloaded to specialized accelerators, or run remotely where resources are available. They also require new design approaches in which monolithic applications can be decomposed into smaller components, that may in turn be executed separately and on the most suitable resources. To address these needs we present funcX---a distributed function as a service (FaaS) platform that enables flexible, scalable, and high performance remote function execution. funcX's endpoint software can transform existing clouds, clusters, and supercomputers into function serving systems, while funcX's cloud-hosted service provides transparent, secure, and reliable function execution across a federated ecosystem of endpoints. We motivate the need for funcX with several scientific case studies, present our prototype design and implementation, show optimizations that deliver throughput in excess of 1 million functions per second, and demonstrate, via experiments on two supercomputers, that funcX can scale to more than more than 130000 concurrent workers.Comment: Accepted to ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC 2020). arXiv admin note: substantial text overlap with arXiv:1908.0490

    Grid-enabling Non-computer Resources

    Get PDF

    Overview of Caching Mechanisms to Improve Hadoop Performance

    Full text link
    Nowadays distributed computing environments, large amounts of data are generated from different resources with a high velocity, rendering the data difficult to capture, manage, and process within existing relational databases. Hadoop is a tool to store and process large datasets in a parallel manner across a cluster of machines in a distributed environment. Hadoop brings many benefits like flexibility, scalability, and high fault tolerance; however, it faces some challenges in terms of data access time, I/O operation, and duplicate computations resulting in extra overhead, resource wastage, and poor performance. Many researchers have utilized caching mechanisms to tackle these challenges. For example, they have presented approaches to improve data access time, enhance data locality rate, remove repetitive calculations, reduce the number of I/O operations, decrease the job execution time, and increase resource efficiency. In the current study, we provide a comprehensive overview of caching strategies to improve Hadoop performance. Additionally, a novel classification is introduced based on cache utilization. Using this classification, we analyze the impact on Hadoop performance and discuss the advantages and disadvantages of each group. Finally, a novel hybrid approach called Hybrid Intelligent Cache (HIC) that combines the benefits of two methods from different groups, H-SVM-LRU and CLQLMRS, is presented. Experimental results show that our hybrid method achieves an average improvement of 31.2% in job execution time

    Advancement of Computing on Large Datasets via Parallel Computing and Cyberinfrastructure

    Get PDF
    Large datasets require efficient processing, storage and management to efficiently extract useful information for innovation and decision-making. This dissertation demonstrates novel approaches and algorithms using virtual memory approach, parallel computing and cyberinfrastructure. First, we introduce a tailored user-level virtual memory system for parallel algorithms that can process large raster data files in a desktop computer environment with limited memory. The application area for this portion of the study is to develop parallel terrain analysis algorithms that use multi-threading to take advantage of common multi-core processors for greater efficiency. Second, we present two novel parallel WaveCluster algorithms that perform cluster analysis by taking advantage of discrete wavelet transform to reduce large data to coarser representations so data is smaller and more easily managed than the original data in size and complexity. Finally, this dissertation demonstrates an HPC gateway service that abstracts away many details and complexities involved in the use of HPC systems including authentication, authorization, and data and job management

    State Management for Efficient Event Pattern Detection

    Get PDF
    Event Stream Processing (ESP) Systeme überwachen kontinuierliche Datenströme, um benutzerdefinierte Queries auszuwerten. Die Herausforderung besteht darin, dass die Queryverarbeitung zustandsbehaftet ist und die Anzahl von Teilübereinstimmungen mit der Größe der verarbeiteten Events exponentiell anwächst. Die Dynamik von Streams und die Notwendigkeit, entfernte Daten zu integrieren, erschweren die Zustandsverwaltung. Erstens liefern heterogene Eventquellen Streams mit unvorhersehbaren Eingaberaten und Queryselektivitäten. Während Spitzenzeiten ist eine erschöpfende Verarbeitung unmöglich, und die Systeme müssen auf eine Best-Effort-Verarbeitung zurückgreifen. Zweitens erfordern Queries möglicherweise externe Daten, um ein bestimmtes Event für eine Query auszuwählen. Solche Abhängigkeiten sind problematisch: Das Abrufen der Daten unterbricht die Stream-Verarbeitung. Ohne eine Eventauswahl auf Grundlage externer Daten wird das Wachstum von Teilübereinstimmungen verstärkt. In dieser Dissertation stelle ich Strategien für optimiertes Zustandsmanagement von ESP Systemen vor. Zuerst ermögliche ich eine Best-Effort-Verarbeitung mittels Load Shedding. Dabei werden sowohl Eingabeeevents als auch Teilübereinstimmungen systematisch verworfen, um eine Latenzschwelle mit minimalem Qualitätsverlust zu garantieren. Zweitens integriere ich externe Daten, indem ich das Abrufen dieser von der Verwendung in der Queryverarbeitung entkoppele. Mit einem effizienten Caching-Mechanismus vermeide ich Unterbrechungen durch Übertragungslatenzen. Dazu werden externe Daten basierend auf ihrer erwarteten Verwendung vorab abgerufen und mittels Lazy Evaluation bei der Eventauswahl berücksichtigt. Dabei wird ein Kostenmodell verwendet, um zu bestimmen, wann welche externen Daten abgerufen und wie lange sie im Cache aufbewahrt werden sollen. Ich habe die Effektivität und Effizienz der vorgeschlagenen Strategien anhand von synthetischen und realen Daten ausgewertet und unter Beweis gestellt.Event stream processing systems continuously evaluate queries over event streams to detect user-specified patterns with low latency. However, the challenge is that query processing is stateful and it maintains partial matches that grow exponentially in the size of processed events. State management is complicated by the dynamicity of streams and the need to integrate remote data. First, heterogeneous event sources yield dynamic streams with unpredictable input rates, data distributions, and query selectivities. During peak times, exhaustive processing is unreasonable, and systems shall resort to best-effort processing. Second, queries may require remote data to select a specific event for a pattern. Such dependencies are problematic: Fetching the remote data interrupts the stream processing. Yet, without event selection based on remote data, the growth of partial matches is amplified. In this dissertation, I present strategies for optimised state management in event pattern detection. First, I enable best-effort processing with load shedding that discards both input events and partial matches. I carefully select the shedding elements to satisfy a latency bound while striving for a minimal loss in result quality. Second, to efficiently integrate remote data, I decouple the fetching of remote data from its use in query evaluation by a caching mechanism. To this end, I hide the transmission latency by prefetching remote data based on anticipated use and by lazy evaluation that postpones the event selection based on remote data to avoid interruptions. A cost model is used to determine when to fetch which remote data items and how long to keep them in the cache. I evaluated the above techniques with queries over synthetic and real-world data. I show that the load shedding technique significantly improves the recall of pattern detection over baseline approaches, while the technique for remote data integration significantly reduces the pattern detection latency

    Partial Replica Location And Selection For Spatial Datasets

    Get PDF
    As the size of scientific datasets continues to grow, we will not be able to store enormous datasets on a single grid node, but must distribute them across many grid nodes. The implementation of partial or incomplete replicas, which represent only a subset of a larger dataset, has been an active topic of research. Partial Spatial Replicas extend this functionality to spatial data, allowing us to distribute a spatial dataset in pieces over several locations. We investigate solutions to the partial spatial replica selection problems. First, we describe and develop two designs for an Spatial Replica Location Service (SRLS), which must return the set of replicas that intersect with a query region. Integrating a relational database, a spatial data structure and grid computing software, we build a scalable solution that works well even for several million replicas. In our SRLS, we have improved performance by designing a R-tree structure in the backend database, and by aggregating several queries into one larger query, which reduces overhead. We also use the Morton Space-filling Curve during R-tree construction, which improves spatial locality. In addition, we describe R-tree Prefetching(RTP), which effectively utilizes the modern multi-processor architecture. Second, we present and implement a fast replica selection algorithm in which a set of partial replicas is chosen from a set of candidates so that retrieval performance is maximized. Using an R-tree based heuristic algorithm, we achieve O(n log n) complexity for this NP-complete problem. We describe a model for disk access performance that takes filesystem prefetching into account and is sufficiently accurate for spatial replica selection. Making a few simplifying assumptions, we present a fast replica selection algorithm for partial spatial replicas. The algorithm uses a greedy approach that attempts to maximize performance by choosing a collection of replica subsets that allow fast data retrieval by a client machine. Experiments show that the performance of the solution found by our algorithm is on average always at least 91% and 93.4% of the performance of the optimal solution in 4-node and 8-node tests respectively

    Transaction-filtering data mining and a predictive model for intelligent data management

    Get PDF
    This thesis, first of all, proposes a new data mining paradigm (transaction-filtering association rule mining) addressing a time consumption issue caused by the repeated scans of original transaction databases in conventional associate rule mining algorithms. An in-memory transaction filter is designed to discard those infrequent items in the pruning steps. This filter is a data structure to be updated at the end of each iteration. The results based on an IBM benchmark show that an execution time reduction of 10% - 19% is achieved compared with the base case. Next, a data mining-based predictive model is then established contributing to intelligent data management within the context of Centre for Grid Computing. The capability of discovering unseen rules, patterns and correlations enables data mining techniques favourable in areas where massive amounts of data are generated. The past behaviours of two typical scenarios (network file systems and Data Grids) have been analyzed to build the model. The future popularity of files can be forecasted with an accuracy of 90% by deploying the above predictor based on the given real system traces. A further step towards intelligent policy design is achieved by analyzing the prediction results of files’ future popularity. The real system trace-based simulations have shown improvements of 2-4 times in terms of data response time in network file system scenario and 24% mean job time reduction in Data Grids compared with conventional cases.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore