23,183 research outputs found

    Zigbee based Wireless Sensor Network for Smart Energy Meter

    Get PDF
    Wireless sensor networks are expanding across a wide range of application scenarios. The most widely used transmitter is "ZigBee," which is used in wireless sensor networks. Based on the IEEE standard known as IEEE 802.15.4, ZigBee is an enabling low-cost technology that offers minimal energy consumption and a low data rate. It is used for remote control, medical aid, home automation, industry control, and other wireless sensor applications, in addition to wireless sensor networks and personal area network applications. This paper aims to develop a wireless sensor network and a protocol for smart energy meter applications. Our proposed system comprises a digital energy meter, a ZigBee coordinator, and a management application. A terminal alert and a cover alarm can be automatically sent to the management software by the wireless meter reading system once it has read the unit. Mistakes from Errors in leakage metering reading to manual meter reading can be avoided. This proposed system will improve efficiency by reducing labor intensity to liberate labor and force. The system setup can accommodate a large number of energy meters with sufficient hop network depth to detect a new energy meter automatically. The technology can be widely used in wireless monitoring and control applications because of its low cost, low power consumption, extended battery life, and mesh networking's ability to extend high reliability to a broader range. To connect a variety of low-power devices wirelessly, ZigBee will satisfy the rising demand. For the future generation of industrial technologies, ZigBee will be deployed.Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved

    Tele-cardiology sensor networks for remote ECG monitoring

    Get PDF
    One of today’s most pressing matters in medical care is the response time to patients in need. The scope of this thesis is to suggest a solution that would help reduce response time in emergency situations utilizing wireless sensor networks technology. Wireless sensor network researches have recently gained unprecedented momentum in both industries and academia, especially its potential applications in Emergency Medical Services and Intensive Care Units. The enhanced power efficiency, minimized production cost, condensed physical layout, as well as reduced wired connections, presents a much more proficient and simplified approach to the continuous monitoring of patients’ physiological status. This thesis focuses on the areas of remote ECG feature extraction utilizing wavelet transformation concepts and sensor networks technology. The proposed sensor network system provides the following contributions. The low-cost, low-power wearable platforms are to be distributed to patients of concern and will provide continuous ECG monitoring by measuring electrical potentials between various points of the body using a galvanometer. The system is enabled with integrated RF communication capability that will relay the signals wirelessly to a workstation monitor. The workstation is equipped with ECG signal processing software that performs ECG characteristic extractions via wavelet transformation. Lastly, a low-complex, end-to-end security scheme is also incorporated into this system to ensure patient privacy. Other notable features include location tracking algorithms for patient tracking, and MATLAB Server environment for internal communication

    Mobihealth: mobile health services based on body area networks

    Get PDF
    In this chapter we describe the concept of MobiHealth and the approach developed during the MobiHealth project (MobiHealth, 2002). The concept was to bring together the technologies of Body Area Networks (BANs), wireless broadband communications and wearable medical devices to provide mobile healthcare services for patients and health professionals. These technologies enable remote patient care services such as management of chronic conditions and detection of health emergencies. Because the patient is free to move anywhere whilst wearing the MobiHealth BAN, patient mobility is maximised. The vision is that patients can enjoy enhanced freedom and quality of life through avoidance or reduction of hospital stays. For the health services it means that pressure on overstretched hospital services can be alleviated

    New intelligent network approach for monitoring physiological parameters : the case of Benin

    Get PDF
    Benin health system is facing many challenges as: (i) affordable high-quality health care to a growing population providing need, (ii) patients’ hospitalization time reduction, (iii) and presence time of the nursing staff optimization. Such challenges can be solved by remote monitoring of patients. To achieve this, five steps were followed. 1) Identification of the Wireless Body Area Network (WBAN) systems’ characteristics and the patient physiological parameters’ monitoring. 2) The national Integrated Patient Monitoring Network (RIMP) architecture modeling in a cloud of Technocenters. 3) Cross-analysis between the characteristics and the functional requirements identified. 4) Each Technocenter’s functionality simulation through: a) the design approach choice inspired by the life cycle of V systems; b) functional modeling through SysML Language; c) the communication technology and different architectures of sensor networks choice studying. 5) An estimate of the material resources of the national RIMP according to physiological parameters. A National Integrated Network for Patient Monitoring (RNIMP) remotely, ambulatory or not, was designed for Beninese health system. The implementation of the RNIMP will contribute to improve patients’ care in Benin. The proposed network is supported by a repository that can be used for its implementation, monitoring and evaluation. It is a table of 36 characteristic elements each of which must satisfy 5 requirements relating to: medical application, design factors, safety, performance indicators and materiovigilance

    Implementing and Evaluating a Wireless Body Sensor System for Automated Physiological Data Acquisition at Home

    Full text link
    Advances in embedded devices and wireless sensor networks have resulted in new and inexpensive health care solutions. This paper describes the implementation and the evaluation of a wireless body sensor system that monitors human physiological data at home. Specifically, a waist-mounted triaxial accelerometer unit is used to record human movements. Sampled data are transmitted using an IEEE 802.15.4 wireless transceiver to a data logger unit. The wearable sensor unit is light, small, and consumes low energy, which allows for inexpensive and unobtrusive monitoring during normal daily activities at home. The acceleration measurement tests show that it is possible to classify different human motion through the acceleration reading. The 802.15.4 wireless signal quality is also tested in typical home scenarios. Measurement results show that even with interference from nearby IEEE 802.11 signals and microwave ovens, the data delivery performance is satisfactory and can be improved by selecting an appropriate channel. Moreover, we found that the wireless signal can be attenuated by housing materials, home appliances, and even plants. Therefore, the deployment of wireless body sensor systems at home needs to take all these factors into consideration.Comment: 15 page

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    On Application of Wireless Sensor Networks for Healthcare Monitoring

    Get PDF
    With the recent advances in embedded systems and very low power ,wireless tech­ nologies, there has been a great interest in the development and application of a new class of distributed Wireless body area network for health monitoring. The first part of the thesis presents a remote patient monitoring system within the scope of Body Area Network standardization. In this regime, wireless sensor networks are used to continuously acquire the patient’s Electrocardiogram signs and transmit data to the base station via IEEE.802.15. The personal Server (PS) which is responsible to provide real-time displaying, storing, and analyzing the patient’s vital signs is developed in MATLAB. It also transfers ECG streams in real-time to a remote client such as a physician or medical center through internet. The PS has the potential to be integrated with home or hospital computer systems. A prototype of this system has been developed and implemented. Tlie developed system takes advantage of two important features for healthcare monitoring: (i) ECG data acqui­ sition using wearable sensors and (ii) real-time data remote through internet. The fact that our system is interacting with sensor network nodes using MATLAB makes it distinct from other previous works. The second part is devoted to the study of indoor body-area channel model for 2.4 GHz narrowband communications. To un­ derstand the narrowband radio propagation near the body, several measurements are carried out in two separate environments for different on body locations. On the basis of these measurements, we have characterized the fading statistics on body links and we have provided a physical interpretation of our results

    A Novel Framework for Software Defined Wireless Body Area Network

    Full text link
    Software Defined Networking (SDN) has gained huge popularity in replacing traditional network by offering flexible and dynamic network management. It has drawn significant attention of the researchers from both academia and industries. Particularly, incorporating SDN in Wireless Body Area Network (WBAN) applications indicates promising benefits in terms of dealing with challenges like traffic management, authentication, energy efficiency etc. while enhancing administrative control. This paper presents a novel framework for Software Defined WBAN (SDWBAN), which brings the concept of SDN technology into WBAN applications. By decoupling the control plane from data plane and having more programmatic control would assist to overcome the current lacking and challenges of WBAN. Therefore, we provide a conceptual framework for SDWBAN with packet flow model and a future direction of research pertaining to SDWBAN.Comment: Presented on 8th International Conference on Intelligent Systems, Modelling and Simulatio
    • 

    corecore