3,617 research outputs found

    Towards the development of a smart flying sensor: illustration in the field of precision agriculture

    Get PDF
    Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology

    State of the Art Smart Grid Laboratories - A Survey about Software Use:RTLabOS D1.2

    Get PDF

    Hybrid System of Distributed Automation

    Get PDF
    One of the most important tendencies in the development of the industrial automation is the application of intelligent control systems within factories, which focuses heavily on networked architectures. Following this line of thinking, the goal of this dissertation resumes itself in the implementation of a distributed system that controls two physical processes, where the system components not only trade information between each other, but also have that same information be accessible remotely and within HMI equipment. The controllers were conceptualized to offer different functional modes with high customization available. This system also takes resource of an OPC server, so it allows, not only the communication between different manufacturer PLC controllers but also the connection with remotes clients The implemented remote clients hold the intent of demonstrating the versatility of this architecture and are, namely, an operational historian that registers information and a data viewer, which allows the use of more advanced methods of monitoring

    Advanced laboratory testing methods using real-time simulation and hardware-in-the-loop techniques : a survey of smart grid international research facility network activities

    Get PDF
    The integration of smart grid technologies in interconnected power system networks presents multiple challenges for the power industry and the scientific community. To address these challenges, researchers are creating new methods for the validation of: control, interoperability, reliability of Internet of Things systems, distributed energy resources, modern power equipment for applications covering power system stability, operation, control, and cybersecurity. Novel methods for laboratory testing of electrical power systems incorporate novel simulation techniques spanning real-time simulation, Power Hardware-in-the-Loop, Controller Hardware-in-the-Loop, Power System-in-the-Loop, and co-simulation technologies. These methods directly support the acceleration of electrical systems and power electronics component research by validating technological solutions in high-fidelity environments. In this paper, members of the Survey of Smart Grid International Research Facility Network task on Advanced Laboratory Testing Methods present a review of methods, test procedures, studies, and experiences employing advanced laboratory techniques for validation of range of research and development prototypes and novel power system solutions

    Open source SCADA systems for small renewable power generation

    Get PDF
    Low cost monitoring and control is essential for small renewable power systems. While large renewable power systems can use existing commercial technology for monitoring and control, that is not cost-effective for small renewable generation. Such small assets require cost-effective, flexible, secure, and reliable real-time coordinated data monitoring and control systems. Supervisory control and data acquisition (SCADA) is the perfect technology for this task. The available commercial SCADA solutions are mostly pricey and economically unjustifiable for smaller applications. They also pose interoperability issues with the existing components which are often from multiple vendors. Therefore, an open source SCADA system represents the most flexible and the most cost-effective SCADA solution. This thesis has been done in two phases. The first phase demonstrates the design and dynamic simulation of a small hybrid power system with a renewable power generation system as a case study. In the second phase, after an extensive study of the proven commercial SCADA solutions and some open source SCADA packages, three different secure, reliable, low-cost open source SCADA options are developed using the most recent SCADA architecture, the Internet of Things. The implemented prototypes of the three open source SCADA systems were tested extensively with a small renewable power system (a solar PV system). The results show that the developed open source SCADA systems perform optimally and accurately, and could serve as viable options for smaller applications such as renewable generation that cannot afford commercial SCADA solutions

    Spacelab system analysis: A study of communications systems for advanced launch systems

    Get PDF
    An analysis of the required performance of internal avionics data bases for future launch vehicles is presented. Suitable local area networks that can service these requirements are determined

    Architecture for Smart Buildings Based on Fuzzy Logic and the OpenFog Standard

    Get PDF
    The combination of Artificial Intelligence and IoT technologies, the so-called AIoT, is expected to contribute to the sustainability of public and private buildings, particularly in terms of energy management, indoor comfort, as well as in safety and security for the occupants. However, IoT systems deployed on modern buildings may generate big amounts of data that cannot be efficiently analyzed and stored in the Cloud. Fog computing has proven to be a suitable paradigm for distributing computing, storage control, and networking functions closer to the edge of the network along the Cloud-to-Things continuum, improving the efficiency of the IoT applications. Unfortunately, it can be complex to integrate all components to create interoperable AIoT applications. For this reason, it is necessary to introduce interoperable architectures, based on standard and universal frameworks, to distribute consistently the resources and the services of AIoT applications for smart buildings. Thus, the rationale for this study stems from the pressing need to introduce complex computing algorithms aimed at improving indoor comfort, safety, and environmental conditions while optimizing energy consumption in public and private buildings. This article proposes an open multi-layer architecture aimed at smart buildings based on a standard framework, the OpenFog Reference Architecture (IEEE 1934–2018 standard). The proposed architecture was validated experimentally at the Faculty of Engineering of Vitoria-Gasteiz to improve indoor environmental quality using Fuzzy logic. Experimental results proved the viability and scalability of the proposed architecture.The authors wish to express their gratitude to the Basque Government, through the project EKOHEGAZ II; to the Diputación Foral de Álava (DFA), through the project CONAVANTER; to the UPV/EHU, through the projects GIU20/063 and CBL 22APIN; and to the MobilityLab Foundation (CONV23/12), for supporting this work

    Development of wireless and intelligent home automation system

    Get PDF
    The Intelligent Home Automation System (IHAS) is usually a cell phone web-based application that enables end users in order to keep track of in addition to manage home/office appliance using their mobile system. The main objective of this system is developed to facilitate home users, especially domestic electrical appliances with simple controls. In addition, it can save the cost of electricity for lighting can be controlled to suit the user. Generally, most home appliances controlled from a distance using a remote control. Has created a system for controlling home lighting from a certain distance, which replaces the remote control using mobile smartphone. To make the smartphone to function as a remote control, an application was developed using Android technology. App Inventor software used for designing applications intended. Hardware microcontroller Arduino UNO R3 which is used to connect the smartphone to the electrical equipment. The system has been tested by developing a mini model and take into account the situation in the domestic home. The test is based on the level of control for wirelessly using Bluetooth and the distance between the lamp and the smartphone. The results of this test, the system can be used on equipment or other home appliances for the purpose of controlling or adjustment. In addition, the security system was also highlighted in a typical system, using the global system for mobile (GSM), it can be warned and notified to the consumer where there is a gas leak or the presence of a person in the vicinity of the residence
    corecore