25,435 research outputs found

    Operating-system support for distributed multimedia

    Get PDF
    Multimedia applications place new demands upon processors, networks and operating systems. While some network designers, through ATM for example, have considered revolutionary approaches to supporting multimedia, the same cannot be said for operating systems designers. Most work is evolutionary in nature, attempting to identify additional features that can be added to existing systems to support multimedia. Here we describe the Pegasus project's attempt to build an integrated hardware and operating system environment from\ud the ground up specifically targeted towards multimedia

    You and I are Past Our Dancing Days

    Get PDF
    Operating systems have grown in size and functionality. Today's many flavours of Unix provide a multi-user environment with protection, address spaces, and attempts to allocate resources fairly to users competing for them, They provide processes and threads, mechanisms for synchronization and memory sharing, blocking and nonblocking system calls, and a complex file system. Since it was first introduced, Unix has grown more then a factor twenty in size. Several operating systems now consist of a microkernel, surrounded by user-space services [Accetta et al., 1986; Mullender et al., 1990; Rozier et al., 1988]. Together they provide the functionality of the operating system. This operating system structure provides an opportunity to make operating systems even larger. The trend for operating systems to grow more and more baroque was signalled more than a decade ago [Feldman, 1980], but has continued unabated until, today, we have OSF/1, the most baroque Unix system ever. And we have Windows/NT as a demonstration that MS-DOS also needed to be replaced by something much bigger and a little better.\ud In this position paper, I am asking what community we serve with our operating systems research. Should we continue doing this, or can we make ourselves more useful to society and industry by using our experience in operating systems in new environments.\ud I argue that there is very little need for bigger and better operating systems; that, in fact, most cPus will never run an operating system at all; and that our experience in operating systems will be better applied to designing new generations of distributed and ubiquitous applications

    Mixed reality participants in smart meeting rooms and smart home enviroments

    Get PDF
    Human–computer interaction requires modeling of the user. A user profile typically contains preferences, interests, characteristics, and interaction behavior. However, in its multimodal interaction with a smart environment the user displays characteristics that show how the user, not necessarily consciously, verbally and nonverbally provides the smart environment with useful input and feedback. Especially in ambient intelligence environments we encounter situations where the environment supports interaction between the environment, smart objects (e.g., mobile robots, smart furniture) and human participants in the environment. Therefore it is useful for the profile to contain a physical representation of the user obtained by multi-modal capturing techniques. We discuss the modeling and simulation of interacting participants in a virtual meeting room, we discuss how remote meeting participants can take part in meeting activities and they have some observations on translating research results to smart home environments

    A best view selection in meetings through attention analysis using a multi-camera network

    Get PDF
    Human activity analysis is an essential task in ambient intelligence and computer vision. The main focus lies in the automatic analysis of ongoing activities from a multi-camera network. One possible application is meeting analysis which explores the dynamics in meetings using low-level data and inferring high-level activities. However, the detection of such activities is still very challenging due to the often corrupted or imprecise low-level data. In this paper, we present an approach to understand the dynamics in meetings using a multi-camera network, consisting of fixed ambient and portable close-up cameras. As a particular application we are aiming to find the most informative video stream, for example as a representative view for a remote participant. Our contribution is threefold: at first, we estimate the extrinsic parameters of the portable close-up cameras based on head positions. Secondly, we find common overlapping areas based on the consensus of people’s orientation. And thirdly, the most informative view for a remote participant is estimated using common overlapping areas. We evaluated our proposed approach and compared it to a motion estimation method. Experimental results show that we can reach an accuracy of 74% compared to manually selected views

    Efficient Data Collection in Multimedia Vehicular Sensing Platforms

    Full text link
    Vehicles provide an ideal platform for urban sensing applications, as they can be equipped with all kinds of sensing devices that can continuously monitor the environment around the travelling vehicle. In this work we are particularly concerned with the use of vehicles as building blocks of a multimedia mobile sensor system able to capture camera snapshots of the streets to support traffic monitoring and urban surveillance tasks. However, cameras are high data-rate sensors while wireless infrastructures used for vehicular communications may face performance constraints. Thus, data redundancy mitigation is of paramount importance in such systems. To address this issue in this paper we exploit sub-modular optimisation techniques to design efficient and robust data collection schemes for multimedia vehicular sensor networks. We also explore an alternative approach for data collection that operates on longer time scales and relies only on localised decisions rather than centralised computations. We use network simulations with realistic vehicular mobility patterns to verify the performance gains of our proposed schemes compared to a baseline solution that ignores data redundancy. Simulation results show that our data collection techniques can ensure a more accurate coverage of the road network while significantly reducing the amount of transferred data
    • 

    corecore