2,678 research outputs found

    Remote Sensing for Precision Nitrogen Management

    Get PDF
    This book focuses on the fundamental and applied research of the non-destructive estimation and diagnosis of crop leaf and plant nitrogen status and in-season nitrogen management strategies based on leaf sensors, proximal canopy sensors, unmanned aerial vehicle remote sensing, manned aerial remote sensing and satellite remote sensing technologies. Statistical and machine learning methods are used to predict plant-nitrogen-related parameters with sensor data or sensor data together with soil, landscape, weather and/or management information. Different sensing technologies or different modelling approaches are compared and evaluated. Strategies are developed to use crop sensing data for in-season nitrogen recommendations to improve nitrogen use efficiency and protect the environment

    Mehitamata õhusõiduki rakendamine põllukultuuride saagikuse ja maa harimisviiside tuvastamisel

    Get PDF
    A Thesis for applying for the degree of Doctor of Philosophy in Environmental Protection.Väitekiri filosoofiadoktori kraadi taotlemiseks keskkonnakaitse erialal.This thesis aims to examine how machine learning (ML) technologies have aided significant advancements in image analysis in the area of precision agriculture. These multimodal computing technologies extend the use of machine learning to a broader spectrum of data collecting and selection for the advancement of agricultural practices (Nawar et al., 2017) These techniques will assist complicated cropping systems with more informed decisions with less human intervention, and provide a scalable framework for incorporating expert knowledge of the PA system. (Chlingaryan et al., 2018). Complexity, on the other hand, can be seen as a disadvantage in crop trials, as machine learning models require training/testing databases, limited areas with insignificant sampling sizes, time and space-specificity, and environmental factor interventions, all of which complicate parameter selection and make using a single empirical model for an entire region impractical. During the early stages of writing this thesis, we used a relatively traditional machine learning method to address the regression problem of crop yield and biomass prediction [(i.e., random forest regression (RFR), support vector regression (SVR), and artificial neural network (ANN)] to predicted dry matter (DM) yields of red clover. It obtained favourable results, however, the choosing of hyperparameters, the lengthy algorithms selection process, data cleaning, and redundant collinearity issues significantly limited the way of the machine learning application. We will further discuss the recent trend of automated machine learning (AutoML) that has been driving further significant technological innovation in the application of artificial intelligence from its automated algorithm selection and hyperparameter optimization of the deployable pipeline model for unravelling substance problems. However, a present knowledge gap exists in the integration of machine learning (ML) technology with unmanned aerial systems (UAS) and hyperspectral-based imaging data categorization and regression applications. In this thesis, we explored a state-of-the-art (SOTA) and entirely open-source AutoML framework, Auto-sklearn, which was built on one of the most frequently used machine learning systems, Scikit-learn. It was integrated with two unique AutoML visualization tools to examine the recognition and acceptance of multispectral vegetation indices (VI) data collected from UAS and hyperspectral narrow-band VIs across a varied spectrum of agricultural management practices (AMP). These procedures incorporate soil tillage method (STM), cultivation method (CM), and manure application (MA), and are classified as four-crop combination fields (i.e., red clover-grass mixture, spring wheat, pea-oat mixture, and spring barley). Additionally, they have not been thoroughly evaluated and lack characteristics that are accessible in agriculture remote sensing applications. This thesis further explores the existing gaps in the knowledge base for several critical crop categories and cultivation management methods referring to biomass and yield analysis, as well as to gain a better understanding of the potential for remotely sensed solutions to field-based and multifunctional platforms to meet precision agriculture demands. To overcome these knowledge gaps, this research introduces a rapid, non-destructive, and low-cost framework for field-based biomass and grain yield modelling, as well as the identification of agricultural management practices. The results may aid agronomists and farmers in establishing more accurate agricultural methods and in monitoring environmental conditions more effectively.Doktoritöö eesmärk oli uurida, kuidas masinõppe (MÕ) tehnoloogiad võimaldavad edusamme täppispõllumajanduse valdkonna pildianalüüsis. Multimodaalsed arvutustehnoloogiad laiendavad masinõppe kasutamist põllumajanduses andmete kogumisel ja valimisel (Nawar et al., 2017). Selline täpsemal informatsioonil põhinev tehnoloogia võimaldab keerukate viljelussüsteemide puhul teha otsuseid inimese vähema sekkumisega, ja loob skaleeritava raamistiku täppispõllumajanduse jaoks (Chlingaryan et al., 2018). Põllukultuuride katsete korral on komplekssete masinõppemudelite kasutamine keerukas, sest alad on piiratud ning valimi suurus ei ole piisav; vaja on testandmebaase, kindlaid aja- ja ruumitingimusi ning keskkonnategureid. See komplitseerib parameetrite valikut ning muudab ebapraktiliseks ühe empiirilise mudeli kasutamise terves piirkonnas. Siinse uurimuse algetapis rakendati suhteliselt traditsioonilist masinõppemeetodit, et lahendada saagikuse ja biomassi prognoosimise regressiooniprobleem (otsustusmetsa regression, tugivektori regressioon ja tehisnärvivõrk) punase ristiku prognoositava kuivaine saagikuse suhtes. Saadi sobivaid tulemusi, kuid hüperparameetrite valimine, pikk algoritmide valimisprotsess, andmete puhastamine ja kollineaarsusprobleemid takistasid masinõpet oluliselt. Automatiseeritud masinõppe (AMÕ) uusimate suundumustena rakendatakse tehisintellekti, et lahendada põhiprobleemid automatiseeritud algoritmi valiku ja rakendatava pipeline-mudeli hüperparameetrite optimeerimise abil. Seni napib teadmisi MÕ tehnoloogia integreerimiseks mehitamata õhusõidukite ning hüperspektripõhiste pildiandmete kategoriseerimise ja regressioonirakendustega. Väitekirjas uuriti nüüdisaegset ja avatud lähtekoodiga AMÕ tehnoloogiat Auto-sklearn, mis on ühe enimkasutatava masinõppesüsteemi Scikit-learn edasiarendus. Süsteemiga liideti kaks unikaalset AMÕ visualiseerimisrakendust, et uurida mehitamata õhusõidukiga kogutud andmete multispektraalsete taimkatteindeksite ja hüperspektraalsete kitsaribaandmete taimkatteindeksite tuvastamist ja rakendamist põllumajanduses. Neid võtteid kasutatakse mullaharimisel, kultiveerimisel ja sõnnikuga väetamisel nelja kultuuriga põldudel (punase ristiku rohusegu, suvinisu, herne-kaera segu, suvioder). Neid ei ole põhjalikult hinnatud, samuti ei hõlma need omadusi, mida kasutatatakse põllumajanduses kaugseire rakendustes. Uurimus käsitleb biomassi ja saagikuse seni uurimata analüüsivõimalusi oluliste põllukultuuride ja viljelusmeetodite näitel. Hinnatakse ka kaugseirelahenduste potentsiaali põllupõhiste ja multifunktsionaalsete platvormide kasutamisel täppispõllumajanduses. Uurimus tutvustab kiiret, keskkonna suhtes kahjutut ja mõõduka hinnaga tehnoloogiat põllupõhise biomassi ja teraviljasaagi modelleerimiseks, et leida sobiv viljelusviis. Töö tulemused võimaldavad põllumajandustootjatel ja agronoomidel tõhusamalt valida põllundustehnoloogiaid ning arvestada täpsemalt keskkonnatingimustega.Publication of this thesis is supported by the Estonian University of Life Scieces and by the Doctoral School of Earth Sciences and Ecology created under the auspices of the European Social Fund

    Unlocking the benefits of spaceborne imaging spectroscopy for sustainable agriculture

    Get PDF
    With the Environmental Mapping and Analysis Program (EnMAP) mission, launched on April 1st 2022, new opportunities unfold for precision farming and agricultural monitoring. The recurring acquisition of spectrometric imagery from space, contiguously resolving the electromagnetic spectrum in the optical domain (400—2500 nm) within close narrow bands, provides unprecedented data about the interaction of radiation with biophysical and biochemical crop constituents. These interactions manifest in spectral reflectance, carrying important information about crop status and health. This information may be incorporated in agricultural management systems to support necessary efforts to maximize yields against the backdrop of an increased food demand by a growing world population. At the same time, it enables the effective optimization of fertilization and pest control to minimize environmental impacts of agriculture. Deriving biophysical and biochemical crop traits from hyperspectral reflectance thereby always relies on a model. These models are categorized into (1) parametric, (2) nonparametric, (3) physically-based, and (4) hybrid retrieval schemes. Parametric methods define an explicit parameterized expression, relating a number of spectral bands or derivates thereof with a crop trait of interest. Nonparametric methods comprise linear techniques, such as principal component analysis (PCA) which addresses collinearity issues between adjacent bands and enables compression of full spectral information into dimensionality reduced, maximal informative principal components (PCs). Nonparametric nonlinear methods, i.e., machine learning (ML) algorithms apply nonlinear transformations to imaging spectroscopy data and are therefore capable of capturing nonlinear relationships within the contained spectral features. Physically-based methods represent an umbrella term for radiative transfer models (RTMs) and related retrieval schemes, such as look-up-table (LUT) inversion. A simple, easily invertible and specific RTM is the Beer-Lambert law which may be used to directly infer plant water content. The most widely used general and invertible RTM is the one-dimensional canopy RTM PROSAIL, which is coupling the Leaf Optical Properties Spectra model PROSPECT and the canopy reflectance model 4SAIL: Scattering by Arbitrarily Inclined Leaves. Hybrid methods make use of synthetic data sets created by RTMs to calibrate parametric methods or to train nonparametric ML algorithms. Due to the ill-posed nature of RTM inversion, potentially unrealistic and redundant samples in a LUT need to be removed by either implementing physiological constraints or by applying active learning (AL) heuristics. This cumulative thesis presents three different hybrid approaches, demonstrated within three scientific research papers, to derive agricultural relevant crop traits from spectrometric imagery. In paper I the Beer-Lambert law is applied to directly infer the thickness of the optically active water layer (i.e., EWT) from the liquid water absorption feature at 970 nm. The model is calibrated with 50,000 PROSPECT spectra and validated over in situ data. Due to separate water content measurements of leaves, stalks, and fruits during the Munich-North-Isar (MNI) campaigns, findings indicate that depending on the crop type and its structure, different parts of the canopy are observed with optical sensors. For winter wheat, correlation between measured and modelled water content was most promising for ears and leaves, reaching coefficients of determination (R2) up to 0.72 and relative RMSE (rRMSE) of 26%, and in the case of corn for the leaf fraction only (R2 = 0.86, rRMSE = 23%). These results led to the general recommendation to collect destructive area-based plant organ specific EWT measurements instead of the common practice to upscale leaf-based EWT measurements to canopy water content (CWC) by multiplication of the leaf area index (LAI). The developed and calibrated plant water retrieval (PWR) model proved to be transferable in space and time and is ready to be applied to upcoming EnMAP data and any other hyperspectral imagery. In paper II the parametric concept of spectral integral ratios (SIR) is introduced to retrieve leaf chlorophyll a and b content (Cab), leaf carotenoid content (Ccx) and leaf water content (Cw) simultaneously from imaging spectroscopy data in the wavelength range 460—1100 nm. The SIR concept is based on automatic separation of respective absorption features through local peak and intercept analysis between log-transformed reflectance and convex hulls. The approach was validated over a physiologically constrained PROSAIL simulated database, considering natural Ccx-Cab relations and green peak locations. Validation on airborne spectrometric HyMAP data achieved satisfactory results for Cab (R2 = 0.84; RMSE = 9.06 µg cm-2) and CWC (R2 = 0.70; RMSE = 0.05 cm). Retrieved Ccx values were reasonable according to Cab-Ccx-dependence plausibility analysis. Mapping of the SIR results as multiband images (3-segment SIR) allows for an intuitive visualization of dominant absorptions with respect to the three considered biochemical variables. Hence, the presented SIR algorithm allows for computationally efficient and RTM supported robust retrievals of the two most important vegetation pigments as well as of water content and is applicable on satellite imaging spectroscopy data. In paper III a hybrid workflow is presented, combining RTM with ML for inferring crop carbon content (Carea) and aboveground dry and fresh biomass (AGBdry, AGBfresh). The concept involves the establishment of a PROSAIL training database, dimensionality reduction using PCA, optimization in the sampling domain using AL against the 4-year MNI campaign dataset, and training of Gaussian process regression (GPR) ML algorithms. Internal validation of the GPR-Carea and GPR-AGB models achieved R2 of 0.80 for Carea, and R2 of 0.80 and 0.71 for AGBdry and AGBfresh, respectively. Validation with an independent dataset, comprising airborne AVIRIS NG imagery (spectrally resampled to EnMAP) and in situ measurements, successfully demonstrated mapping capabilities for both bare and green fields and generated reliable estimates over winter wheat fields at low associated model uncertainties (< 40%). Overall, the proposed carbon and biomass models demonstrate a promising path toward the inference of these crucial variables over cultivated areas from upcoming spaceborne hyperspectral acquisitions, such as from EnMAP. As conclusions, the following important findings arise regarding parametric and nonparametric hybrid methods as well as in view of the importance of in situ data collection. (1) Uncertainties within the RTM PROSAIL should always be considered. A possible reduction of these uncertainties is thereby opposed to the invertibility of the model and its intended simplicity. (2) Both physiological constraints and AL heuristics should be applied to reduce unrealistic parameter combinations in a PROSAIL calibration or training database. (3) State-of-the-art hybrid ML approaches with the ability to provide uncertainty intervals are anticipated as most promising approach for solving inference problems from hyperspectral Earth observation data due to their synergistic use of RTMs and the high flexibility, accuracy and consistency of nonlinear nonparametric methods. (4) Parametric hybrid approaches, due to their algorithmic transparency, enable deeper insights into fundamental physical limitations of optical remote sensing as compared to ML approaches. (5) Integration-based indices that make full use of available hyperspectral information may serve as physics-aware dimensionality reduced input for ML algorithms to either improve estimations or to serve as endmember for crop type discrimination when additional time series information is available. (6) The validation of quantitative model-based estimations is crucial to evaluate and improve their performance in terms of the underlying assumptions, model parameterizations, and input data. (7) In the face of soon-to-be-available EnMAP data, collection of in situ data for validation of retrieval methods should aim at high variability of measured crop types, high temporal variability over the whole growing season, as well as include area- and biomass-based destructive measurements instead of LAI-upscaled leaf measurements. Provided the perfect functionality of the payload instruments, the success of the EnMAP mission and the here presented methods depend critically on a low-noise, accurate atmospherically corrected reflectance product. High-level outputs of the retrieval methods presented in this thesis may be incorporated into agricultural decision support systems for fertilization and irrigation planning, yield estimation, or estimation of the soil carbon sequestration potential to enable a sustainable intensive agriculture in the future.Mit der am 1. April 2022 gestarteten Satellitenmission Environmental Mapping and Analysis Program (EnMAP) eröffnen sich neue Möglichkeiten für die Präzisionslandwirtschaft und das landwirtschaftliche Monitoring. Die wiederkehrende Erfassung spektrometrischer Bilder aus dem Weltraum, welche das elektromagnetische Spektrum im optischen Bereich (400—2500 nm) innerhalb von engen, schmalen Bändern zusammenhängend auflösen, liefert nie dagewesene Daten über die Interaktionen von Strahlung und biophysikalischen und biochemischen Pflanzenbestandteilen. Diese Wechselwirkungen manifestieren sich in der spektralen Reflektanz, die wichtige Informationen über den Zustand und die Gesundheit der Pflanzen enthält. Vor dem Hintergrund einer steigenden Nachfrage nach Nahrungsmitteln durch eine wachsende Weltbevölkerung können diese Informationen in landwirtschaftliche Managementsysteme einfließen, um eine notwendige Ertragsmaximierung zu unterstützen. Gleichzeitig können sie eine effiziente Optimierung der Düngung und Schädlingsbekämpfung ermöglichen, um die Umweltauswirkungen der Landwirtschaft zu minimieren. Die Ableitung biophysikalischer und biochemischer Pflanzeneigenschaften aus hyperspektralen Reflektanzdaten ist dabei immer von einem Modell abhängig. Diese Modelle werden in (1) parametrische, (2) nichtparametrische, (3) physikalisch basierte und (4) hybride Ableitungsmethoden kategorisiert. Parametrische Methoden definieren einen expliziten parametrisierten Ausdruck, der eine Reihe von Spektralkanälen oder deren Ableitungen mit einem Pflanzenmerkmal von Interesse in Beziehung setzt. Nichtparametrische Methoden umfassen lineare Techniken wie die Hauptkomponentenanalyse (PCA). Diese adressieren Kollinearitätsprobleme zwischen benachbarten Kanälen und komprimieren die gesamte Spektralinformation in dimensionsreduzierte, maximal informative Hauptkomponenten (PCs). Nichtparametrische nichtlineare Methoden, d. h. Algorithmen des maschinellen Lernens (ML), wenden nichtlineare Transformationen auf bildgebende Spektroskopiedaten an und sind daher in der Lage, nichtlineare Beziehungen innerhalb der enthaltenen spektralen Merkmale zu erfassen. Physikalisch basierte Methoden sind ein Oberbegriff für Strahlungstransfermodelle (RTM) und damit verbundene Ableitungsschemata, d. h. Invertierungsverfahren wie z. B. die Invertierung mittels Look-up-Table (LUT). Ein einfaches, leicht invertierbares und spezifisches RTM stellt das Lambert-Beer'sche Gesetz dar, das zur direkten Ableitung des Wassergehalts von Pflanzen verwendet werden kann. Das am weitesten verbreitete, allgemeine und invertierbare RTM ist das eindimensionale Bestandsmodell PROSAIL, eine Kopplung des Blattmodells Leaf Optical Properties Spectra (PROSPECT) mit dem Bestandsreflexionsmodell 4SAIL (Scattering by Arbitrarily Inclined Leaves). Bei hybriden Methoden werden von RTMs generierte, synthetische Datenbanken entweder zur Kalibrierung parametrischer Methoden oder zum Training nichtparametrischer ML-Algorithmen verwendet. Aufgrund der Äquifinalitätsproblematik bei der RTM-Invertierung, müssen potenziell unrealistische und redundante Simulationen in einer solchen Datenbank durch die Implementierung natürlicher physiologischer Beschränkungen oder durch die Anwendung von Active Learning (AL) Heuristiken entfernt werden. In dieser kumulativen Dissertation werden drei verschiedene hybride Ansätze zur Ableitung landwirtschaftlich relevanter Pflanzenmerkmale aus spektrometrischen Bilddaten vorgestellt, die anhand von drei wissenschaftlichen Publikationen demonstriert werden. In Paper I wird das Lambert-Beer'sche Gesetz angewandt, um die Dicke der optisch aktiven Wasserschicht (bzw. EWT) direkt aus dem Absorptionsmerkmal von flüssigem Wasser bei 970 nm abzuleiten. Das Modell wird mit 50.000 PROSPECT-Spektren kalibriert und anhand von In-situ-Daten validiert. Aufgrund separater Messungen des Wassergehalts von Blättern, Stängeln und Früchten während der München-Nord-Isar (MNI)-Kampagnen, zeigen die Ergebnisse, dass je nach Kulturart und -struktur, unterschiedliche Teile des Bestandes mit optischen Sensoren beobachtet werden können. Bei Winterweizen wurde die höchste Korrelation zwischen gemessenem und modelliertem Wassergehalt für Ähren und Blätter erzielt und sie erreichte Bestimmtheitsmaße (R2) von bis zu 0,72 bei einem relativen RMSE (rRMSE) von 26%, bei Mais entsprechend nur für die Blattfraktion (R2 = 0,86, rRMSE = 23%). Diese Ergebnisse führten zu der allgemeinen Empfehlung, Kompartiment-spezifische EWT-Bestandsmessungen zu erheben, anstatt der üblichen Praxis, blattbasierte EWT-Messungen durch Multiplikation mit dem Blattflächenindex (LAI) auf den Bestandswassergehalt (CWC) hochzurechnen. Das entwickelte und kalibrierte Modell zur Ableitung des Pflanzenwassergehalts (PWR) erwies sich als räumlich und zeitlich übertragbar und kann auf bald verfügbare EnMAP-Daten und andere hyperspektrale Bilddaten angewendet werden. In Paper II wird das parametrische Konzept der spektralen Integralratios (SIR) eingeführt, um den Chlorophyll a- und b-Gehalt (Cab), den Karotinoidgehalt (Ccx) und den Wassergehalt (Cw) simultan aus bildgebenden Spektroskopiedaten im Wellenlängenbereich 460-1100 nm zu ermitteln. Das SIR-Konzept basiert auf der automatischen Separierung der jeweiligen Absorptionsmerkmale durch lokale Maxima- und Schnittpunkt-Analyse zwischen log-transformierter Reflektanz und konvexen Hüllen. Der Ansatz wurde anhand einer physiologisch eingeschränkten PROSAIL-Datenbank unter Berücksichtigung natürlicher Ccx-Cab-Beziehungen und Positionen der Maxima im grünen Wellenlängenbereich validiert. Die Validierung mit flugzeuggestützten spektrometrischen HyMAP-Daten ergab zufriedenstellende Ergebnisse für Cab (R2 = 0,84; RMSE = 9,06 µg cm-2) und CWC (R2 = 0,70; RMSE = 0,05 cm). Die ermittelten Ccx-Werte wurden anhand einer Plausibilitätsanalyse entsprechend der Cab-Ccx-Abhängigkeit als sinnvoll bewertet. Die Darstellung der SIR-Ergebnisse als mehrkanalige Bilder (3 segment SIR) ermöglicht zudem eine auf die drei betrachteten biochemischen Variablen bezogene, intuitive Visualisierung der dominanten Absorptionen. Der vorgestellte SIR-Algorithmus ermöglicht somit wenig rechenintensive und RTM-gestützte robuste Ableitungen der beiden wichtigsten Pigmente sowie des Wassergehalts und kann in auf jegliche zukünftig verfügbare Hyperspektraldaten angewendet werden. In Paper III wird ein hybrider Ansatz vorgestellt, der RTM mit ML kombiniert, um den Kohlenstoffgehalt (Carea) sowie die oberirdische trockene und frische Biomasse (AGBdry, AGBfresh) abzuschätzen. Das Konzept umfasst die Erstellung einer PROSAIL-Trainingsdatenbank, die Dimensionsreduzierung mittels PCA, die Reduzierung der Stichprobenanzahl mittels AL anhand des vier Jahre umspannenden MNI-Kampagnendatensatzes und das Training von Gaussian Process Regression (GPR) ML-Algorithmen. Die interne Validierung der GPR-Carea und GPR-AGB-Modelle ergab einen R2 von 0,80 für Carea und einen R2 von 0,80 bzw. 0,71 für AGBdry und AGBfresh. Die Validierung auf einem unabhängigen Datensatz, der flugzeuggestützte AVIRIS-NG-Bilder (spektral auf EnMAP umgerechnet) und In-situ-Messungen umfasste, zeigte erfolgreich die Kartierungsfähigkeiten sowohl für offene Böden als auch für grüne Felder und führte zu zuverlässigen Schätzungen auf Winterweizenfeldern bei geringen Modellunsicherheiten (< 40%). Insgesamt zeigen die vorgeschlagenen Kohlenstoff- und Biomassemodelle einen vielversprechenden Ansatz auf, der zur Ableitung dieser wichtigen Variablen über Anbauflächen aus künftigen weltraumgestützten Hyperspektralaufnahmen wie jenen von EnMAP genutzt werden kann. Als Schlussfolgerungen ergeben sich die folgenden wichtigen Erkenntnisse in Bezug auf parametrische und nichtparametrische Hybridmethoden sowie bezogen auf die Bedeutung der In-situ-Datenerfassung. (1) Unsicherheiten innerhalb des RTM PROSAIL sollten immer berücksichtigt werden. Eine mögliche Verringerung dieser Unsicherheiten steht dabei der Invertierbarkeit des Modells und dessen beabsichtigter Einfachheit entgegen. (2) Sowohl physiologische Einschränkungen als auch AL-Heuristiken sollten angewendet werden, um unrealistische Parameterkombinationen in einer PROSAIL-Kalibrierungs- oder Trainingsdatenbank zu reduzieren. (3) Modernste ML-Ansätze mit der Fähigkeit, Unsicherheitsintervalle bereitzustellen, werden als vielversprechendster Ansatz für die Lösung von Inferenzproblemen aus hyperspektralen Erdbeobachtungsdaten aufgrund ihrer synergetischen Nutzung von RTMs und der hohen Flexibilität, Genauigkeit und Konsistenz nichtlinearer nichtparametrischer Methoden angesehen. (4) Parametrische hybride Ansätze ermöglichen aufgrund ihrer algorithmischen Transparenz im Vergleich zu ML-Ansätzen tiefere Einblicke in die grundlegenden physikalischen Grenzen der optischen Fernerkundung. (5) Integralbasierte Indizes, die die verfügbare hyperspektrale Information voll ausschöpfen, können als physikalisch-basierte dimensionsreduzierte Inputs für ML-Algorithmen dienen, um entweder Schätzungen zu verbessern oder um als Eingangsdaten die verbesserte Unterscheidung von Kulturpflanzen zu ermöglichen, sobald zusätzliche Zeitreiheninformationen verfügbar sind. (6) Die Validierung quantitativer modellbasierter Schätzungen ist von entscheidender Bedeutung für die Bewertung und Verbesserung ihrer Leistungsfähigkeit in Bezug auf die zugrunde liegenden Annahmen, Modellparametrisierungen und Eingabedaten. (7) Angesichts der bald verfügbaren EnMAP-Daten sollte die Erhebung von In-situ-Daten zur Validierung von Ableitungsmethoden auf eine hohe Variabilität der gemessenen Pflanzentypen und eine hohe zeitliche Variabilität über die gesamte Vegetationsperiode abzielen sowie flächen- und biomassebasierte destruktive Messungen anstelle von LAI-skalierten Blattmessungen umfassen. Unter der Voraussetzung, dass die Messinstrumente perfekt funktionieren, hängt der Erfolg der EnMAP-Mission und der hier vorgestellten Methoden entscheidend von einem rauscharmen, präzise atmosphärisch korrigierten Reflektanzprodukt ab. Die Ergebnisse der in dieser Arbeit vorgestellten Methoden können in landwirtschaftliche Entscheidungsunterstützungssysteme für die Dünge- oder Bewässerungsplanung, die Ertragsabschätzung oder die Schätzung des Potenzials der Kohlenstoffbindung im Boden integriert werden, um eine nachhaltige Intensivlandwirtschaft in der Zukunft zu ermöglichen

    Airborne Hyperspectral Data Application in Stress Detection of Blueberry Fields and Ash Trees

    Get PDF
    Water management and irrigation practices are persistent challenges for many agricultural systems. Changing seasonal and weather patterns impose a greater need for understanding crop deficiencies and excesses (e.g. water, sunlight, nutrients) for optimal growth while allocating proper resources for prompt response. The wild blueberry industry is at heightened susceptibility due to its unique growing conditions and uncultivated nature. Early detection of stress in agricultural fields can prompt management responses to mitigate detrimental conditions including drought and disease. Remote sensing has provided timely and reliable information covering large spatial extents, while novel applications in hyperspectral data and imaging spectroscopy have shown potential in early stress detection. We assess airborne spectral data accompanied by ground sampled water potential over three developmental stages of wild blueberries to accurately detect water content. Airborne scans of spectral data were collected three times throughout the 2019 summer in Deblois, Maine. Data were collected over two adjacent fields, one irrigated and one nonirrigated. Ground sampled data were collected in tandem to the UAV collection. The ground sampled data over the irrigated and non-irrigated fields guided digital sampling from the imagery to act as training for our models. Using methods in machine learning and statistical analysis, we related hyperspectral reflectance measurements to different water potential levels in blueberry plant leaves to decipher vegetation signals both spatially and temporally through utilizing the capacity of imaging spectroscopy. Models were developed to determine irrigation status and water potential. Seven models were assessed in this study with four used to process six hyperspectral cube images for analysis. These images were classified as irrigated or non-irrigated and estimated water potential levels. Our global water potential model had an R2 of 0.62. Models for the water potential predictions were verified with a validation dataset. Forest insect and disease pests have a significant impact on the well-being of individual trees and forest stands, affecting ecosystem processes and potentially human health. Dispersing through 35 states within only 17 years (USDA, 2020), the effect of emerald ash borer (Agrilus Planipennis Fairmaire) (EAB) in the United States has been particularly severe and devastating. Early detection of stress in forests can prompt management responses to mitigate detrimental conditions including drought and disease as well as pest outbreaks. Remote sensing has provided timely and reliable information covering large spatial extents, while novel applications in hyperspectral data and imaging spectroscopy have shown potential in early stress detection. We build on previous work by assessing airborne spectral data, and health classifications of EAB infested ash trees in aims to accurately detect stress. Airborne scans of spectral data were collected within three days in late July 2019 over three sites in southern New Hampshire. Ground sampled data were collected in November 2019 and include sampled ash classified on a scale of 1-5 (1=healthy, no major branch morality, 5=dead). The ground sampled data of different health classifications guided digital sampling from the imagery to act as training and validation for our models. Using methods in machine learning and statistical analysis, we related reflectance measurements to different classifications of ash tree health to understand tree stress signals while utilizing the capacity of remote sensing. Models were developed to classify health in ash trees impacted by EAB. The first entailed a shadow classifier, followed by one for health. Eighteen cube images contained ground sampled data and were processed with the two models, then further buffered. Pixel classification for each buffer sample was calculated. The health classifier model was used on a validation test set and had an prediction accuracy of 76.1%

    Detection, identification, and quantification of fungal diseases of sugar beet leaves using imaging and non-imaging hyperspectral techniques

    Get PDF
    Plant diseases influence the optical properties of plants in different ways. Depending on the host pathogen system and disease specific symptoms, different regions of the reflectance spectrum are affected, resulting in specific spectral signatures of diseased plants. The aim of this study was to examine the potential of hyperspectral imaging and non-imaging sensor systems for the detection, differentiation, and quantification of plant diseases. Reflectance spectra of sugar beet leaves infected with the fungal pathogens Cercospora beticola, Erysiphe betae, and Uromyces betae causing Cercospora leaf spot, powdery mildew, and sugar beet rust, respectively, were recorded repeatedly during pathogenesis. Hyperspectral data were analyzed using various methods of data and image analysis and were compared to ground truth data. Several approaches with different sensors on the measuring scales leaf, canopy, and field have been tested and compared. Much attention was paid on the effect of spectral, spatial, and temporal resolution of hyperspectral sensors on disease recording. Another focus of this study was the description of spectral characteristics of disease specific symptoms. Therefore, different data analysis methods have been applied to gain a maximum of information from spectral signatures. Spectral reflectance of sugar beet was affected by each disease in a characteristic way, resulting in disease specific signatures. Reflectance differences, sensitivity, and best correlating spectral bands differed depending on the disease and the developmental stage of the diseases. Compared to non-imaging sensors, the hyperspectral imaging sensor gave extra information related to spatial resolution. The preciseness in detecting pixel-wise spatial and temporal differences was on a high level. Besides characterization of diseased leaves also the assessment of pure disease endmembers as well as of different regions of typical symptoms was realized. Spectral vegetation indices (SVIs) related to physiological parameters were calculated and correlated to the severity of diseases. The SVIs differed in their sensitivity to the different diseases. Combining the information from multiple SVIs in an automatic classification method with Support Vector Machines, high sensitivity and specificity for the detection and differentiation of diseased leaves was reached in an early stage. In addition to the detection and identification, the quantification of diseases was possible with high accuracy by SVIs and Spectral Angle Mapper classification, calculated from hyperspectral images. Knowledge from measurements under controlled condition was carried over to the field scale. Early detection and monitoring of Cercospora leaf spot and powdery mildew was facilitated. The results of this study contribute to a better understanding of plant optical properties during disease development. Methods will further be applicable in precision crop protection, to realize the detection, differentiation, and quantification of plant diseases in early stages.Nachweis, Identifizierung und Quantifizierung pilzlicher Blattkrankheiten der Zuckerrübe mit abbildenden und nicht-abbildenden hyperspektralen Sensoren Pflanzenkrankheiten wirken sich auf die optischen Eigenschaften von Pflanzen in unterschiedlicher Weise aus. Verschiedene Bereiche des Reflektionsspektrums werden in Abhängigkeit von Wirt-Pathogen System und krankheitsspezifischen Symptomen beeinflusst. Hyperspektrale, nicht-invasive Sensoren bieten die Möglichkeit, optische Veränderungen zu einem frühen Zeitpunkt der Krankheitsentwicklung zu detektieren. Ziel dieser Arbeit war es, das Potential hyperspektraler abbildender und nicht abbildender Sensoren für die Erkennung, Identifizierung und Quantifizierung von Pflanzenkrankheiten zu beurteilen. Zuckerrübenblätter wurden mit den pilzlichen Erregern Cercospora beticola, Erysiphe betae bzw. Uromyces betae inokuliert und die Auswirkungen der Entwicklung von Cercospora Blattflecken, Echtem Mehltau bzw. Rübenrost auf die Reflektionseigenschaften erfasst und mit optischen Bonituren verglichen. Auf den Skalenebenen Blatt, Bestand und Feld wurden Messansätze mit unterschiedlichen Sensoren verglichen. Besonders berücksichtigt wurden hierbei Anforderungen an die spektrale, räumliche und zeitliche Auflösung der Sensoren. Ein weiterer Schwerpunkt lag auf der Beschreibung der spektralen Eigenschaften von charakteristischen Symptomen. Verschiedene Auswerteverfahren wurden mit dem Ziel angewendet, einen maximalen Informationsgehalt aus spektralen Signaturen zu gewinnen. Jede Krankheit beeinflusste die spektrale Reflektion von Zuckerrübenblättern auf charakteristische Weise. Differenz der Reflektion, Sensitivität sowie Korrelation der spektralen Bänder zur Befallsstärke variierten in Abhängigkeit von den Krankheiten. Eine höhere Präzision durch die pixelweise Erfassung räumlicher und zeitlicher Unterschiede von befallenem und gesundem Gewebe konnte durch abbildende Sensoren erreicht werden. Spektrale Vegetationsindizes (SVIs), mit Bezug zu pflanzenphysiologischen Parametern wurden aus den Hyperspektraldaten errechnet und mit der Befallsstärke korreliert. Die SVIs unterschieden sich in ihrer Sensitivität gegenüber den drei Krankheiten. Durch den Einsatz von maschinellem Lernen wurde die kombinierte Information der errechneten Vegetationsindizes für eine automatische Klassifizierung genutzt. Eine hohe Sensitivität sowie eine hohe Spezifität bezüglich der Erkennung und Differenzierung von Krankheiten wurden erreicht. Eine Quantifizierung der Krankheiten war neben der Detektion und Identifizierung mittels SVIs bzw. Klassifizierung mit Spektral Angle Mapper an hyperspektralen Bilddaten möglich. Die Ergebnisse dieser Arbeit tragen zu einem besseren Verständnis der optischen Eigenschaften von Pflanzen unter Pathogeneinfluss bei. Die untersuchten Methoden bieten die Möglichkeit in Anwendungen des Präzisionspflanzenschutzes implementiert zu werden, um eine frühzeitige Erkennung, Differenzierung und Quantifizierung von Pflanzenkrankheiten zu ermöglichen

    Mapping within-field leaf chlorophyll content in agricultural crops for nitrogen management using Landsat-8 imagery

    Get PDF
    Spatial information on crop nutrient status is central for monitoring vegetation health, plant productivity and managing nutrient optimization programs in agricultural systems. This study maps the spatial variability of leaf chlorophyll content within felds with differing quantities of nitrogen fertilizer application, using multispectral Landsat-8 OLI data (30 m). Leaf chlorophyll content and leaf area index measurements were collected at 15 wheat (Triticum aestivum) sites and 13 corn (Zea mays) sites approximately every 10 days during the growing season between May and September 2013 near Stratford, Ontario. Of the 28 sites, 9 sites were within controlled areas of zero nitrogen fertilizer application. Hyperspectral leaf refectance measurements were also sampled using an Analytical Spectral Devices FieldSpecPro spectroradiometer (400–2500 nm). A two-step inversion process was developed to estimate leaf chlorophyll content from Landsat-8 satellite data at the subfeld scale, using linked canopy and leaf radiative transfer models. Firstly, at the leaf-level, leaf chlorophyll content was modelled using the PROSPECT model, using both hyperspectral and simulated mulitspectral Landsat-8 bands from the same leaf sample. Hyperspectral and multispectral validation results were both strong (R2=0.79, RMSE=13.62 μg/cm2 and R2=0.81, RMSE=9.45 μg/cm2, respectively). Secondly, leaf chlorophyll content was estimated from Landsat-8 satellite imagery for 7 dates within the growing season, using PROSPECT linked to the 4-Scale canopy model. The Landsat-8 derived estimates of leaf chlorophyll content demonstrated a strong relationship with measured leaf chlorophyll values (R2=0.64, RMSE=16.18 μg/cm2), and compared favourably to correlations between leaf chlorophyll and the best performing tested spectral vegetation index (Green Normalised Diference Vegetation Index, GNDVI; R2=0.59). This research provides an operational basis for modelling within-feld variations in leaf chlorophyll content as an indicator of plant nitrogen stress, using a physically-based modelling approach, and opens up the possibility of exploiting a wealth of multispectral satellite data and UAV-mounted multispectral imaging systems

    Using hyperspectral remote sensing to map grape quality in 'Tempranillo' vineyards affected by iron deficiency chlorosis

    Get PDF
    The objectives of this work wereto investigate the relationships between chlorophyll a+b concentration in leaves (Cab) and grape composition parameters in vineyards affected by iron chlorosis, andstudy whether the assessment of Cab from hyperspectral remote sensing imagery could be useful to map different potential quality zones in these vineyards.A field trial was conducted in a vineyard with the chlorosis susceptible cultivar. 'Tempranillo', over '110 Richter', located in Northern Spain. Three experimental treatments were applied: 0, 2, and 4 foliar sprayings with a ligninsulphonate derived product (10 % water soluble Fe) in a randomized design with 3 replications. The yield and grape composition parameters at harvest were measured for each base-plot (10x10 m in size), and related with chlorophyll concentration in leaves. On the other hand, a total of 24 'Tempranillo' commercial vineyards were identified for field and airborne data collection with CASI hyperspectral sensor, comprising 103 study areas of 10x10 m in size. A total of 1467 leaves were collected for determining pigment concentration and optical properties. Several narrow-band vegetation indices were calculated from leaf reflectance spectra. Results of trial showed that the lack of pigmentation in leaves was a major factor limiting grape ripening. Significant linear regressions between Cab and total soluble solids concentration and colour density of the must were detected. Estimation of Cab using the image-calculated TCARI/OSAVI through the PROSPECT-rowMCRM model simulation for all study zones, including the specific ligninsulphonate experiment, demonstrated the potential of hyperspectral imagery for mapping Cab in vineyards for chlorosis detection using remote sensing methods. Given the described relationship between Cab and quality parameters in vineyards affected by iron chlorosis, high-spatial resolution imagery with narrow bands might enable the segmentation in areas of potential quality in the framework of precision viticulture.

    In-situ fruit analysis by means of LiDAR 3D point cloud of normalized difference vegetation index (NDVI)

    Get PDF
    A feasible method to analyse fruit at the tree is requested in precise production management. The employment of light detection and ranging (LiDAR) was approached aimed at measuring the number of fruit, quality-related size, and ripeness-related chlorophyll of fruit skin. During fruit development (65 – 130 day after full bloom, DAFB), apples were harvested and analysed in the laboratory (n = 225) with two LiDAR laser scanners measuring at 660 and 905 nm. From these two 3D point clouds, the normalized difference vegetation index (NDVILiDAR) was calculated. The correlation analysis of NDVILiDAR and chemically analysed fruit chlorophyll content showed R2 = 0.81 and RMSE = 3.63 % on the last measuring date, when fruit size reached 76 mm. The method was tested on 3D point clouds of 12 fruit trees measured directly in the orchard, during fruit growth on five measuring dates, and validated with manual fruit analysis in the orchard (n = 4632). Point clouds of individual apples were segmented from 3D point clouds of trees and fruit NDVILiDAR were calculated. The non-invasively obtained field data showed good calibration performance capturing number of fruit, fruit size, fruit NDVILiDAR, and chemically analysed chlorophyll content of R2 = 0.99, R2 = 0.98 with RMSE = 3.02 %, R2 = 0.65 with RMSE = 0.65 %, R2 = 0.78 with RMSE = 1.31 %, respectively, considering the related reference data at last measuring date 130 DAFB. The new approach of non-invasive laser scanning provided physiologically and agronomically valuable time series data on differences in fruit chlorophyll affected by the leaf area to number of fruit and leaf area to fruit fresh mass ratios. Concluding, the method provides a tool for gaining production-relevant plant data for, e.g., crop load management and selective harvesting by harvest robots
    • …
    corecore