5,008 research outputs found

    Formal Relationships Between Geometrical and Classical Models for Concurrency

    Get PDF
    A wide variety of models for concurrent programs has been proposed during the past decades, each one focusing on various aspects of computations: trace equivalence, causality between events, conflicts and schedules due to resource accesses, etc. More recently, models with a geometrical flavor have been introduced, based on the notion of cubical set. These models are very rich and expressive since they can represent commutation between any bunch of events, thus generalizing the principle of true concurrency. While they seem to be very promising - because they make possible the use of techniques from algebraic topology in order to study concurrent computations - they have not yet been precisely related to the previous models, and the purpose of this paper is to fill this gap. In particular, we describe an adjunction between Petri nets and cubical sets which extends the previously known adjunction between Petri nets and asynchronous transition systems by Nielsen and Winskel

    On properties of modeling control software for embedded control applications with CSP/CT framework

    Get PDF
    This PROGRESS project (TES.5224) traces a design framework for implementing embedded real-time software for control applications by exploiting its natural concurrency. The paper illustrates the stage of yielded automation in the process of structuring complex control software architectures, modeling controlled mechatronic systems and designing corresponding control laws, simulating them, generating control code out of simulated control strategy and implementing the software system on a (embedded) computer. The gap between the development of control strategies and the procedures of implementing them on chosen hardware targets is going to be overcome

    On partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency

    Full text link
    Concurrent systems are notoriously difficult to analyze, and technological advances such as weak memory architectures greatly compound this problem. This has renewed interest in partial order semantics as a theoretical foundation for formal verification techniques. Among these, symbolic techniques have been shown to be particularly effective at finding concurrency-related bugs because they can leverage highly optimized decision procedures such as SAT/SMT solvers. This paper gives new fundamental results on partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency. In particular, we give the theoretical basis for a decision procedure that can handle a fragment of concurrent programs endowed with least fixed point operators. In addition, we show that a certain partial order semantics of relaxed sequential consistency is equivalent to the conjunction of three extensively studied weak memory axioms by Alglave et al. An important consequence of this equivalence is an asymptotically smaller symbolic encoding for bounded model checking which has only a quadratic number of partial order constraints compared to the state-of-the-art cubic-size encoding.Comment: 15 pages, 3 figure

    Maintaining consistency in distributed systems

    Get PDF
    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability

    On the Model of Computation of Place/Transition Petri Nets

    No full text
    In the last few years, the semantics of Petri nets has been investigated in several different ways. Apart from the classical "token game", one can model the behaviour of Petri nets via non-sequential processes, via unfolding constructions, which provide formal relationships between nets and domains, and via algebraic models, which view Petri nets as essentially algebraic theories whose models are monoidal categories. In this paper we show that these three points of view can be reconciled. More precisely, we introduce the new notion of decorated processes of Petri nets and we show that they induce on nets the same semantics as that of unfolding. In addition, we prove that the decorated processes of a net N can be axiomatized as the arrows of a symmetric monoidal category which, therefore, provides the aforesaid unification

    Action Contraction

    Get PDF
    The question we consider in this paper is: “When can a combination of fine-grain execution steps be contracted into an atomic action execution”? Our answer is basically: “When no observer can see the difference.” This is worked out in detail by defining a notion of coupled split/atomic simulation refinement between systems which differ in the atomicity of their actions, and proving that this collapses to Parrow and Sjödin’s coupled similarity when the systems are composed with an observer

    Reversible Barbed Congruence on Configuration Structures

    Get PDF
    A standard contextual equivalence for process algebras is strong barbed congruence. Configuration structures are a denotational semantics for processes in which one can define equivalences that are more discriminating, i.e. that distinguish the denotation of terms equated by barbed congruence. Hereditary history preserving bisimulation (HHPB) is such a relation. We define a strong back and forth barbed congruence using a reversible process algebra and show that the relation induced by the back and forth congruence is equivalent to HHPB, providing a contextual characterization of HHPB.Comment: In Proceedings ICE 2015, arXiv:1508.0459
    corecore