9,066 research outputs found

    On globally sparse Ramsey graphs

    Full text link
    We say that a graph GG has the Ramsey property w.r.t.\ some graph FF and some integer r2r\geq 2, or GG is (F,r)(F,r)-Ramsey for short, if any rr-coloring of the edges of GG contains a monochromatic copy of FF. R{\"o}dl and Ruci{\'n}ski asked how globally sparse (F,r)(F,r)-Ramsey graphs GG can possibly be, where the density of GG is measured by the subgraph HGH\subseteq G with the highest average degree. So far, this so-called Ramsey density is known only for cliques and some trivial graphs FF. In this work we determine the Ramsey density up to some small error terms for several cases when FF is a complete bipartite graph, a cycle or a path, and r2r\geq 2 colors are available

    All finite transitive graphs admit self-adjoint free semigroupoid algebras

    Full text link
    In this paper we show that every non-cycle finite transitive directed graph has a Cuntz-Krieger family whose WOT-closed algebra is B(H)B(\mathcal{H}). This is accomplished through a new construction that reduces this problem to in-degree 22-regular graphs, which is then treated by applying the periodic Road Coloring Theorem of B\'eal and Perrin. As a consequence we show that finite disjoint unions of finite transitive directed graphs are exactly those finite graphs which admit self-adjoint free semigroupoid algebras.Comment: Added missing reference. 16 pages 2 figure

    Two extensions of Ramsey's theorem

    Get PDF
    Ramsey's theorem, in the version of Erd\H{o}s and Szekeres, states that every 2-coloring of the edges of the complete graph on {1, 2,...,n} contains a monochromatic clique of order 1/2\log n. In this paper, we consider two well-studied extensions of Ramsey's theorem. Improving a result of R\"odl, we show that there is a constant c>0c>0 such that every 2-coloring of the edges of the complete graph on \{2, 3,...,n\} contains a monochromatic clique S for which the sum of 1/\log i over all vertices i \in S is at least c\log\log\log n. This is tight up to the constant factor c and answers a question of Erd\H{o}s from 1981. Motivated by a problem in model theory, V\"a\"an\"anen asked whether for every k there is an n such that the following holds. For every permutation \pi of 1,...,k-1, every 2-coloring of the edges of the complete graph on {1, 2, ..., n} contains a monochromatic clique a_1<...<a_k with a_{\pi(1)+1}-a_{\pi(1)}>a_{\pi(2)+1}-a_{\pi(2)}>...>a_{\pi(k-1)+1}-a_{\pi(k-1)}. That is, not only do we want a monochromatic clique, but the differences between consecutive vertices must satisfy a prescribed order. Alon and, independently, Erd\H{o}s, Hajnal and Pach answered this question affirmatively. Alon further conjectured that the true growth rate should be exponential in k. We make progress towards this conjecture, obtaining an upper bound on n which is exponential in a power of k. This improves a result of Shelah, who showed that n is at most double-exponential in k.Comment: 21 pages, accepted for publication in Duke Math.
    corecore