260 research outputs found

    Pointwise intersection in neighbourhood modal logic

    Full text link
    We study the logic of neighbourhood models with pointwise intersection, as a means to characterize multi-modal logics. Pointwise intersection takes us from a set of neighbourhood sets Ni\mathcal{N}_i (one for each member ii of a set GG, used to interpret the modality □i\square_i) to a new neighbourhood set NG\mathcal{N}_G, which in turn allows us to interpret the operator □G\square_G. Here, XX is in the neighbourhood for GG if and only if XX equals the intersection of some Y={Yi∣i∈G}\mathcal{Y} = \{Y_i \mid i\in G\}. We show that the notion of pointwise intersection has various applications in epistemic and doxastic logic, deontic logic, coalition logic, and evidence logic. We then establish sound and strongly complete axiomatizations for the weakest logic characterized by pointwise intersection and for a number of variants, using a new and generally applicable technique for canonical model construction.Comment: Submitted to Advances in Modal Logic 201

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later

    On a Straw Man in the Philosophy of Science - A Defense of the Received View

    Get PDF
    I defend the Received View on scientific theories as developed by Carnap, Hempel, and Feigl against a number of criticisms based on misconceptions. First, I dispute the claim that the Received View demands axiomatizations in first order logic, and the further claim that these axiomatizations must include axioms for the mathematics used in the scientific theories. Next, I contend that models are important according to the Received View. Finally, I argue against the claim that the Received View is intended to make the concept of a theory more precise. Rather, it is meant as a generalizable framework for explicating specific theories

    Potential infinity, abstraction principles and arithmetic (Leniewski Style)

    Get PDF
    This paper starts with an explanation of how the logicist research program can be approached within the framework of Leśniewski’s systems. One nice feature of the system is that Hume’s Principle is derivable in it from an explicit definition of natural numbers. I generalize this result to show that all predicative abstraction principles corresponding to second-level relations, which are provably equivalence relations, are provable. However, the system fails, despite being much neater than the construction of Principia Mathematica (PM). One of the key reasons is that, just as in the case of the system of PM, without the assumption that infinitely many objects exist, (renderings of) most of the standard axioms of Peano Arithmetic are not derivable in the system. I prove that introducing modal quantifiers meant to capture the intuitions behind potential infinity results in the (renderings of) axioms of Peano Arithmetic (PA) being valid in all relational models (i.e. Kripke-style models, to be defined later on) of the extended language. The second, historical part of the paper contains a user-friendly description of Leśniewski’s own arithmetic and a brief investigation into its properties

    Characterising Testing Preorders for Finite Probabilistic Processes

    Full text link
    In 1992 Wang & Larsen extended the may- and must preorders of De Nicola and Hennessy to processes featuring probabilistic as well as nondeterministic choice. They concluded with two problems that have remained open throughout the years, namely to find complete axiomatisations and alternative characterisations for these preorders. This paper solves both problems for finite processes with silent moves. It characterises the may preorder in terms of simulation, and the must preorder in terms of failure simulation. It also gives a characterisation of both preorders using a modal logic. Finally it axiomatises both preorders over a probabilistic version of CSP.Comment: 33 page
    • …
    corecore