217 research outputs found

    Bayesian adaptation

    Full text link
    In the need for low assumption inferential methods in infinite-dimensional settings, Bayesian adaptive estimation via a prior distribution that does not depend on the regularity of the function to be estimated nor on the sample size is valuable. We elucidate relationships among the main approaches followed to design priors for minimax-optimal rate-adaptive estimation meanwhile shedding light on the underlying ideas.Comment: 20 pages, Propositions 3 and 5 adde

    Finite-Rank Multivariate-Basis Expansions of the Resolvent Operator as a Means of Solving the Multivariable Lippmann-Schwinger Equation for Two-Particle Scattering

    Get PDF
    Cataloged from PDF version of article.Finite-rank expansions of the two-body resolvent operator are explored as a tool for calculating the full three-dimensional two-body T-matrix without invoking the partial-wave decomposition. The separable expansions of the full resolvent that follow from finite-rank approximations of the free resolvent are employed in the Low equation to calculate the T-matrix elements. The finite-rank expansions of the free resolvent are generated via projections onto certain finite-dimensional approximation subspaces. Types of operator approximations considered include one-sided projections (right or left projections), tensor-product (or outer) projection and inner projection. Boolean combination of projections is explored as a means of going beyond tensor-product projection. Two types of multivariate basis functions are employed to construct the finite-dimensional approximation spaces and their projectors: (i) Tensor-product bases built from univariate local piecewise polynomials, and (ii) multivariate radial functions. Various combinations of approximation schemes and expansion bases are applied to the nucleon-nucleon scattering employing a model two-nucleon potential. The inner-projection approximation to the free resolvent is found to exhibit the best convergence with respect to the basis size. Our calculations indicate that radial function bases are very promising in the context of multivariable integral equations

    Book reviews

    Get PDF

    Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory

    Full text link
    We develop a new method for studying the asymptotics of symmetric polynomials of representation-theoretic origin as the number of variables tends to infinity. Several applications of our method are presented: We prove a number of theorems concerning characters of infinite-dimensional unitary group and their qq-deformations. We study the behavior of uniformly random lozenge tilings of large polygonal domains and find the GUE-eigenvalues distribution in the limit. We also investigate similar behavior for alternating sign matrices (equivalently, six-vertex model with domain wall boundary conditions). Finally, we compute the asymptotic expansion of certain observables in O(n=1)O(n=1) dense loop model.Comment: Published at http://dx.doi.org/10.1214/14-AOP955 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The linear algebra of interpolation with finite applications giving computational methods for multivariate polynomials

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 1988Linear representation and the duality of the biorthonormality relationship express the linear algebra of interpolation by way of the evaluation mapping. In the finite case the standard bases relate the maps to Gramian matrices. Five equivalent conditions on these objects are found which characterize the solution of the interpolation problem. This algebra succinctly describes the solution space of ordinary linear initial value problems. Multivariate polynomial spaces and multidimensional node sets are described by multi-index sets. Geometric considerations of normalization and dimensionality lead to cardinal bases for Lagrange interpolation on regular node sets. More general Hermite functional sets can also be solved by generalized Newton methods using geometry and multi-indices. Extended to countably infinite spaces, the method calls upon theorems of modern analysis
    corecore