8,992 research outputs found

    Global Production Networks and Industrial Upgrading in China: The Case in Electronics Contract Manufacturing.

    Get PDF
    The paper analyzes the networks of U.S. and Taiwan based electronics contract manufacturers in South China, today the world´s most important location for low-cost mass production in the electronics industry. Based on extensive empirical research, the paper traces the production sites, the organization of manufacturing, and the workforce policies of contract manufacturers in the region, and discusses perspectives and limits of industrial upgrading, especially with regard to the role of labor. In theoretical terms, the author attempts to integrate an analysis of "global flagship networks" with concepts of industrial sociology.

    Automated Global Feature Analyzer - A Driver for Tier-Scalable Reconnaissance

    Get PDF
    For the purposes of space flight, reconnaissance field geologists have trained to become astronauts. However, the initial forays to Mars and other planetary bodies have been done by purely robotic craft. Therefore, training and equipping a robotic craft with the sensory and cognitive capabilities of a field geologist to form a science craft is a necessary prerequisite. Numerous steps are necessary in order for a science craft to be able to map, analyze, and characterize a geologic field site, as well as effectively formulate working hypotheses. We report on the continued development of the integrated software system AGFA: automated global feature analyzerreg, originated by Fink at Caltech and his collaborators in 2001. AGFA is an automatic and feature-driven target characterization system that operates in an imaged operational area, such as a geologic field site on a remote planetary surface. AGFA performs automated target identification and detection through segmentation, providing for feature extraction, classification, and prioritization within mapped or imaged operational areas at different length scales and resolutions, depending on the vantage point (e.g., spaceborne, airborne, or ground). AGFA extracts features such as target size, color, albedo, vesicularity, and angularity. Based on the extracted features, AGFA summarizes the mapped operational area numerically and flags targets of "interest", i.e., targets that exhibit sufficient anomaly within the feature space. AGFA enables automated science analysis aboard robotic spacecraft, and, embedded in tier-scalable reconnaissance mission architectures, is a driver of future intelligent and autonomous robotic planetary exploration

    CODEWEAVE: exploring fine-grained mobility of code

    Get PDF
    This paper is concerned with an abstract exploration of code mobility constructs designed for use in settings where the level of granularity associated with the mobile units exhibits significant variability. Units of mobility that are both finer and coarser grained than the unit of execution are examined. To accomplish this, we take the extreme view that every line of code and every variable declaration are potentially mobile, i.e., it may be duplicated or moved from one program context to another on the same host or across the network. We also assume that complex code assemblies may move with equal ease. The result is CODEWEAVE, a model that shows how to develop new forms of code mobility, assign them precise meaning, and facilitate formal verification of programs employing them. The design of CODEWEAVE relies greatly on Mobile UNITY, a notation and proof logic for mobile computing. Mobile UNITY offers a computational milieu for examining a wide range of constructs and semantic alternatives in a clean abstract setting, i.e., unconstrained by compilation and performance considerations traditionally associated with programming language design. Ultimately, the notation offered by CODEWEAVE is given exact semantic definition by means of a direct mapping to the underlying Mobile UNITY model. The abstract and formal treatment of code mobility offered by CODEWEAVE establishes a technical foundation for examining competing proposals and for subsequent integration of some of the mobility constructs both at the language level and within middleware for mobility

    Connectivity-guaranteed and obstacle-adaptive deployment schemes for mobile sensor networks

    Get PDF
    Mobile sensors can relocate and self-deploy into a network. While focusing on the problems of coverage, existing deployment schemes largely over-simplify the conditions for network connectivity: they either assume that the communication range is large enough for sensors in geometric neighborhoods to obtain location information through local communication, or they assume a dense network that remains connected. In addition, an obstacle-free field or full knowledge of the field layout is often assumed. We present new schemes that are not governed by these assumptions, and thus adapt to a wider range of application scenarios. The schemes are designed to maximize sensing coverage and also guarantee connectivity for a network with arbitrary sensor communication/sensing ranges or node densities, at the cost of a small moving distance. The schemes do not need any knowledge of the field layout, which can be irregular and have obstacles/holes of arbitrary shape. Our first scheme is an enhanced form of the traditional virtual-force-based method, which we term the Connectivity-Preserved Virtual Force (CPVF) scheme. We show that the localized communication, which is the very reason for its simplicity, results in poor coverage in certain cases. We then describe a Floor-based scheme which overcomes the difficulties of CPVF and, as a result, significantly outperforms it and other state-of-the-art approaches. Throughout the paper our conclusions are corroborated by the results from extensive simulations

    Nursing Students\u27 Self-Efficacy and Attitude: Examining the Influence ofthe Omaha System In Nurse Managed Centers

    Get PDF
    Self-efficacy, or confidence, as an outcome behavior has been identified as influencing nursing job satisfaction and retention. Clinical learning environments and teaching strategies that build and support perceived self-efficacy are critical aspects of preparing new nurses for their entry and continuing role as professional nurses in today\u27s information-intensive data-management healthcare environment. The purpose of this pre-test post-test study is to measure, using the C-scale (Grundy, 1992), nursing students\u27 self-efficacy to perform patient assessment in Nurse Managed Centers (NMC) after one semester of using the Omaha System documentation framework. Nursing students\u27 attitudes of preparation for using Standardized Nursing Languages (SNL) in the future was also examined. Bandura\u27s (1977, 19986) theoretical model of self-efficacy provided the conceptual framework. Students\u27 overall self-efficacy scores increased significantly over the 12 week study. Use of the Omaha System \u27prepared a little\u27 to \u27very prepared\u27 90% of student nurses for future use of SNL. Continued use of the Omaha System documentation framework in Nurse Managed Center clinicals as a tool for understanding SNL is recommended.

    The "Free from housing accessibility problems" app

    Get PDF
    Publisher Copyright: © 2016 The authors and IOS Press.The present study concerns the development of a computerized tool targeting housing accessibility issues. A user-centered approach involving professionals from the housing sector and senior citizens from four European countries resulted in a fully functional prototype of a mobile application (app) including an apartment database. The app raises awareness on housing accessibility and has the potential to support decision making and strengthen all citizens regardless of functional capacity to be more active in their endeavors for a satisfying housing solution. Further refinements and additional features are needed to enhance the potential benefits; they include addressing potential challenges facing senior citizens, developing interactive features that allow users to provide input and adapting to different national contexts to make the app applicable for the European market.publishersversionPeer reviewe

    Enterprise Composition Architecture for Micro-Granular Digital Services and Products

    Get PDF
    The digitization of our society changes the way we live, work, learn, communicate, and collaborate. This defines the strategical context for composing resilient enterprise architectures for micro-granular digital services and products. The change from a closed-world modeling perspective to more flexible open-world composition and evolution of system architectures defines the moving context for adaptable systems, which are essential to enable the digital transformation. Enterprises are presently transforming their strategy and culture together with their processes and information systems to become more digital. The digital transformation deeply disrupts existing enterprises and economies. Since years a lot of new business opportunities appeared using the potential of the Internet and related digital technologies, like Internet of Things, services computing, cloud computing, big data with analytics, mobile systems, collaboration networks, and cyber physical systems. Digitization fosters the development of IT systems with many rather small and distributed structures, like Internet of Things or mobile systems. In this paper, we are focusing on the continuous bottom-up integration of micro-granular architectures for a huge amount of dynamically growing systems and services, like Internet of Things and Microservices, as part of a new digital enterprise architecture. To integrate micro-granular architecture models to living architectural model versions we are extending more traditional enterprise architecture reference models with state of art elements for agile architectural engineering to support the digitalization of services with related products, and their processes
    corecore