122 research outputs found

    Lattice-Based Analog Mappings for Low-Latency Wireless Sensor Networks

    Get PDF
    © 2023 IEEE. This version of the article has been accepted for publication, after peer review. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The Version of Record is available online at: https://doi.org/10.1109/JIOT.2023.3273194.[Abstract]: We consider the transmission of spatially correlated analog information in a wireless sensor network (WSN) through fading single-input and multiple-output (SIMO) multiple access channels (MACs) with low-latency requirements. A lattice-based analog joint source-channel coding (JSCC) approach is considered where vectors of consecutive source symbols are encoded at each sensor using an n -dimensional lattice and then transmitted to a multiantenna central node. We derive a minimum mean square error (MMSE) decoder that accounts for both the multidimensional structure of the encoding lattices and the spatial correlation. In addition, a sphere decoder is considered to simplify the required searches over the multidimensional lattices. Different lattice-based mappings are approached and the impact of their size and density on performance and latency is analyzed. Results show that, while meeting low-latency constraints, lattice-based analog JSCC provides performance gains and higher reliability with respect to the state-of-the-art JSCC schemes.This work was supported in part by the Xunta de Galicia under Grant ED431C 2020/15, and in part by MCIN/AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR under Grant PID2019-104958RB-C42 (ADELE), Grant TED2021-130240B-I00 (IVRY), and Grant BES-2017-081955. CITIC is funded by Xunta de Galicia through the collaboration agreement between the Consellería de Cultura, Educación, Formación Profesional e Universidades, and the Galician universities for the strengthening of the research centers of the Galician University System (CIGUS).Xunta de Galicia; ED431C 2020/1

    Power Optimisation and Relay Selection in Cooperative Wireless Communication Networks

    Get PDF
    Cooperative communications have emerged as a significant concept to improve reliability and throughput in wireless systems. In cooperative networks, the idea is to implement a scheme in wireless systems where the nodes can harmonize their resources thereby enhancing the network performance in different aspects such as latency, BER and throughput. As cooperation spans from the basic idea of transmit diversity achieved via MIMO techniques and the relay channel, it aims to reap somewhat multiple benefits of combating fading/burst errors, increasing throughput and reducing energy use. Another major benefit of cooperation in wireless networks is that since the concept only requires neighbouring nodes to act as virtual relay antennas, the concept evades the negative impacts of deployment costs of multiple physical antennas for network operators especially in areas where they are difficult to deploy. In cooperative communications energy efficiency and long network lifetimes are very important design issues, the focus in this work is on ad hoc and sensor network varieties where the nodes integrate sensing, processing and communication such that their cooperation capabilities are subject to power optimisation. As cooperation communications leads to trade-offs in Quality of Services and transmit power, the key design issue is power optimisation to dynamically combat channel fluctuations and achieve a net reduction of transmit power with the goal of saving battery life. Recent researches in cooperative communications focus on power optimisation achieved via power control at the PHY layer, and/or scheduling mechanism at the MAC layer. The approach for this work will be to review the power control strategy at the PHY layer, identify their associated trade-offs, and use this as a basis to propose a power control strategy that offers adaptability to channel conditions, the road to novelty in this work is a channel adaptable power control algorithm that jointly optimise power allocation, modulation strategy and relay selection. Thus, a novel relay selection method is developed and implemented to improve the performance of cooperative wireless networks in terms of energy consumption. The relay selection method revolves on selection the node with minimum distance to the source and destination. The design is valid to any wireless network setting especially Ad-hoc and sensor networks where space limitations preclude the implementation of bigger capacity battery. The thesis first investigates the design of relay selection schemes in cooperative networks and the associated protocols. Besides, modulation strategy and error correction code impact on energy consumption are investigated and the optimal solution is proposed and jointly implemented with the relay selection method. The proposed algorithm is extended to cooperative networks in which multiple nodes participate in cooperation in fixed and variable rate system. Thus, multi relay selection algorithm is proposed to improve virtual MIMO performance in terms of energy consumption. Furthermore, motivated by the trend of cell size optimisation in wireless networks, the proposed relay selection method is extended to clustered wireless networks, and jointly implemented with virtual clustering technique. The work will encompass three main stages: First, the cooperative system is designed and two major protocols Decode and Forward (DF) and amplify and forward (AF) are investigated. Second, the proposed algorithm is modelled and tested under different channel conditions with emphasis on its performance using different modulation strategies for different cooperative wireless networks. Finally, the performance of the proposed algorithm is illustrated and verified via computer simulations. Simulation results show that the distance based relay selection algorithm exhibits an improved performance in terms of energy consumption compared to the conventional cooperative schemes under different cooperative communication scenarios

    Side information aware source and channel coding in wireless networks

    Get PDF
    Signals in communication networks exhibit significant correlation, which can stem from the physical nature of the underlying sources, or can be created within the system. Current layered network architectures, in which, based on Shannon’s separation theorem, data is compressed and transmitted over independent bit-pipes, are in general not able to exploit such correlation efficiently. Moreover, this strictly layered architecture was developed for wired networks and ignore the broadcast and highly dynamic nature of the wireless medium, creating a bottleneck in the wireless network design. Technologies that exploit correlated information and go beyond the layered network architecture can become a key feature of future wireless networks, as information theory promises significant gains. In this thesis, we study from an information theoretic perspective, three distinct, yet fundamental, problems involving the availability of correlated information in wireless networks and develop novel communication techniques to exploit it efficiently. We first look at two joint source-channel coding problems involving the lossy transmission of Gaussian sources in a multi-terminal and a time-varying setting in which correlated side information is present in the network. In these two problems, the optimality of Shannon’s separation breaks down and separate source and channel coding is shown to perform poorly compared to the proposed joint source-channel coding designs, which are shown to achieve the optimal performance in some setups. Then, we characterize the capacity of a class of orthogonal relay channels in the presence of channel side information at the destination, and show that joint decoding and compression of the received signal at the relay is required to optimally exploit the available side information. Our results in these three different scenarios emphasize the benefits of exploiting correlated side information at the destination when designing a communication system, even though the nature of the side information and the performance measure in the three scenarios are quite different.Open Acces

    System design and validation of multi-band OFDM wireless communications with multiple antennas

    Get PDF
    [no abstract

    On multiple-antenna communications: signal detection, error exponent and and quality of service

    Get PDF
    Motivated by the demand of increasing data rate in wireless communication, multiple-antenna communication is becoming a key technology in the next generation wireless system. This dissertation considers three different aspects of multipleantenna communication. The first part is signal detection in the multiple-input multiple-output (MIMO) communication. Some low complexity near optimal detectors are designed based on an improved version of Bell Laboratories Layered Space-Time (BLAST) architecture detection and an iterative space alternating generalized expectation-maximization (SAGE) algorithm. The proposed algorithms can almost achieve the performance of optimal maximum likelihood detection. Signal detections without channel knowledge (noncoherent) and with co-channel interference are also investigated. Novel solutions are proposed with near optimal performance. Secondly, the error exponent of the distributed multiple-antenna communication (relay) in the windband regime is computed. Optimal power allocation between the source and relay node, and geometrical relay node placement are investigated based on the error exponent analysis. Lastly, the quality of service (QoS) of MIMO/single-input single- output(SISO) communication is studied. The tradeoff of the end-to-end distortion and transmission buffer delay is derived. Also, the SNR exponent of the distortion is computed for MIMO communication, which can provide some insights of the interplay among time diversity, space diversity and the spatial multiplex gain
    • …
    corecore