3,506 research outputs found

    Reliable scaling of position weight matrices for binding strength comparisons between transcription factors.

    Get PDF
    BACKGROUND: Scoring DNA sequences against Position Weight Matrices (PWMs) is a widely adopted method to identify putative transcription factor binding sites. While common bioinformatics tools produce scores that can reflect the binding strength between a specific transcription factor and the DNA, these scores are not directly comparable between different transcription factors. Other methods, including p-value associated approaches (Touzet H, Varré J-S. Efficient and accurate p-value computation for position weight matrices. Algorithms Mol Biol. 2007;2(1510.1186):1748-7188), provide more rigorous ways to identify potential binding sites, but their results are difficult to interpret in terms of binding energy, which is essential for the modeling of transcription factor binding dynamics and enhancer activities. RESULTS: Here, we provide two different ways to find the scaling parameter λ that allows us to infer binding energy from a PWM score. The first approach uses a PWM and background genomic sequence as input to estimate λ for a specific transcription factor, which we applied to show that λ distributions for different transcription factor families correspond with their DNA binding properties. Our second method can reliably convert λ between different PWMs of the same transcription factor, which allows us to directly compare PWMs that were generated by different approaches. CONCLUSION: These two approaches provide computationally efficient ways to scale PWM scores and estimate the strength of transcription factor binding sites in quantitative studies of binding dynamics. Their results are consistent with each other and previous reports in most of cases

    Reliable scaling of position weight matrices for binding strength comparisons between transcription factors

    Get PDF
    Background: Scoring DNA sequences against PositionWeight Matrices (PWMs) is a widely adopted method to identify putative transcription factor binding sites. While common bioinformatics tools produce scores that can reflect the binding strength between a specific transcription factor and the DNA, these scores are not directly comparable between different transcription factors. Other methods, including p-value associated approaches (Touzet H, Varré J-S. Efficient and accurate p-value computation for position weight matrices. Algorithms Mol Biol. 2007;2(1510.1186):1748–7188), provide more rigorous ways to identify potential binding sites, but their results are difficult to interpret in terms of binding energy, which is essential for the modeling of transcription factor binding dynamics and enhancer activities. Results: Here, we provide two different ways to find the scaling parameter λ that allows us to infer binding energy from a PWM score. The first approach uses a PWM and background genomic sequence as input to estimate λ for a specific transcription factor, which we applied to show that λ distributions for different transcription factor families correspond with their DNA binding properties. Our second method can reliably convert λ between different PWMs of the same transcription factor, which allows us to directly compare PWMs that were generated by different approaches. Conclusion: These two approaches provide computationally efficient ways to scale PWM scores and estimate the strength of transcription factor binding sites in quantitative studies of binding dynamics. Their results are consistent with each other and previous reports in most of cases.Chinese Scholarship Council (CSC) ScholarshipMarshall ScholarshipDGICT, Madrid TIN2013-41990-RRoyal Society of Londo

    Predicting the impact of promoter variability on regulatory outputs

    Get PDF
    The increased availability of whole genome sequences calls for quantitative models of global gene expression, yet predicting gene expression patterns directly from genome sequence remains a challenge. We examine the contributions of an individual regulator, the ferrous iron-responsive regulatory element, BqsR, on global patterns of gene expression in Pseudomonas aeruginosa. The position weight matrix (PWM) derived for BqsR uncovered hundreds of likely binding sites throughout the genome. Only a subset of these potential binding sites had a regulatory consequence, suggesting that BqsR/DNA interactions were not captured within the PWM or that the broader regulatory context at each promoter played a greater role in setting promoter outputs. The architecture of the BqsR operator was systematically varied to understand how binding site parameters influence expression. We found that BqsR operator affinity was predicted by the PWM well. At many promoters the surrounding regulatory context, including overlapping operators of BqsR or the presence of RhlR binding sites, were influential in setting promoter outputs. These results indicate more comprehensive models that include local regulatory contexts are needed to develop a predictive understanding of global regulatory outputs

    Genome-wide prediction, display and refinement of binding sites with information theory-based models

    Get PDF
    BACKGROUND: We present Delila-genome, a software system for identification, visualization and analysis of protein binding sites in complete genome sequences. Binding sites are predicted by scanning genomic sequences with information theory-based (or user-defined) weight matrices. Matrices are refined by adding experimentally-defined binding sites to published binding sites. Delila-Genome was used to examine the accuracy of individual information contents of binding sites detected with refined matrices as a measure of the strengths of the corresponding protein-nucleic acid interactions. The software can then be used to predict novel sites by rescanning the genome with the refined matrices. RESULTS: Parameters for genome scans are entered using a Java-based GUI interface and backend scripts in Perl. Multi-processor CPU load-sharing minimized the average response time for scans of different chromosomes. Scans of human genome assemblies required 4–6 hours for transcription factor binding sites and 10–19 hours for splice sites, respectively, on 24- and 3-node Mosix and Beowulf clusters. Individual binding sites are displayed either as high-resolution sequence walkers or in low-resolution custom tracks in the UCSC genome browser. For large datasets, we applied a data reduction strategy that limited displays of binding sites exceeding a threshold information content to specific chromosomal regions within or adjacent to genes. An HTML document is produced listing binding sites ranked by binding site strength or chromosomal location hyperlinked to the UCSC custom track, other annotation databases and binding site sequences. Post-genome scan tools parse binding site annotations of selected chromosome intervals and compare the results of genome scans using different weight matrices. Comparisons of multiple genome scans can display binding sites that are unique to each scan and identify sites with significantly altered binding strengths. CONCLUSIONS: Delila-Genome was used to scan the human genome sequence with information weight matrices of transcription factor binding sites, including PXR/RXRα, AHR and NF-κB p50/p65, and matrices for RNA binding sites including splice donor, acceptor, and SC35 recognition sites. Comparisons of genome scans with the original and refined PXR/RXRα information weight matrices indicate that the refined model more accurately predicts the strengths of known binding sites and is more sensitive for detection of novel binding sites

    Position specific variation in the rate of evolution in transcription factor binding sites

    Get PDF
    BACKGROUND: The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. RESULTS: Here we analyse the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikatae to study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artefacts of computational motif finding algorithms. CONCLUSION: As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative sequence data in the identification of transcription factor binding sites and is an important step toward understanding the evolution of functional non-coding DNA

    Biophysical Fitness Landscapes for Transcription Factor Binding Sites

    Full text link
    Evolutionary trajectories and phenotypic states available to cell populations are ultimately dictated by intermolecular interactions between DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by the interactions between transcription factors (TFs) and their cognate genomic sites. Our study is informed by high-throughput in vitro measurements of TF-DNA binding interactions and by a comprehensive collection of genomic binding sites. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer fitness as a function of TF-DNA binding energy for a collection of 12 yeast TFs, and show that the shape of the predicted fitness functions is in broad agreement with a simple thermodynamic model of two-state TF-DNA binding. However, the effective temperature of the model is not always equal to the physical temperature, indicating selection pressures in addition to biophysical constraints caused by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding site evolves independently, showing that epistasis is common in evolution of gene regulation. Finally, by correlating TF-DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios of site-specific selection, under which binding sites of the same TF would experience a spectrum of selection pressures depending on their position in the genome. These findings argue for the existence of universal fitness landscapes which shape evolution of all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions

    Protein-DNA Recognition Models for the Homeodomain and C2H2 Zinc Finger Transcription Factor Families

    Get PDF
    Transcription factors: TFs) play a central role in the gene regulatory network of each cell. They can stimulate or inhibit transcription of their target genes by binding to short, degenerate DNA sequence motifs. The goal of this research is to build improved models of TF binding site recognition. This can facilitate the determination of regulatory networks and also allow for the prediction of binding site motifs based only on the TF protein sequence. Recent technological advances have rapidly expanded the amount of quantitative TF binding data available. PBMs: Protein Binding Microarrays) have recently been implemented in a format that allows all 10mers to be assayed in parallel. There is now PBM data available for hundreds of transcription factors. Another fairly recent technique for determining the binding preference of a TF is an in vivo bacterial one-hybrid assay: B1H). In this approach a TF is expressed in E. coli where it can be used to select strong binding sites from a library of randomized sites located upstream of a weak promoter, driving expression of a selectable gene. When coupled with high throughput sequencing and a newly developed analysis method, quantitative binding data can be obtained. In the last few years, the binding specificities of hundreds of TFs have been determined using B1H. The two largest eukaryotic transcription factor families are the zf-C2H2 and homeodomain TF families. Newly available PBM and B1H specificity models were used to develop recognition models for these two families, with the goal of being able to predict the binding specific of a TF from its protein sequence. We developed a feature selection method based on adjusted mutual information that automatically recovers nearly all of the known key residues for the homeodomain and zf-C2H2 families. Using those features we find that, for both families, random forest: RF) and support vector machine: SVM) based recognition models outperform the nearest neighbor method, which has previously been considered the best method
    • …
    corecore