282 research outputs found

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    Rateless Space-Time Block Codes for 5G Wireless Communication Systems

    Get PDF
    This chapter presents a rateless space-time block code (RSTBC) for massive multiple-input multiple-output (MIMO) wireless communication systems. We discuss the principles of rateless coding compared to the fixed-rate channel codes. A literature review of rateless codes (RCs) is also addressed. Furthermore, the chapter illustrates the basis of RSTBC deployments in massive MIMO transmissions over lossy wireless channels. In such channels, data may be lost or are not decodable at the receiver end due to a variety of factors such as channel losses or pilot contamination. Massive MIMO is a breakthrough wireless transmission technique proposed for future wireless standards due to its spectrum and energy efficiencies. We show that RSTBC guarantees the reliability of the system in such highly lossy channels. Moreover, pilot contamination (PC) constitutes a particularly significant impairment in reciprocity-based multi-cell systems. PC results from the non-orthogonality of the pilot sequences in different cells. In this chapter, RSTBC is also employed in the downlink transmission of a multi-cell massive MIMO system to mitigate the effects of signal-to-interference-and-noise ratio (SINR) degradation resulting from PC. We conclude that RSTBC can effectively mitigate such interference. Hence, RSTBC is a strong candidate for the upcoming 5G wireless communication systems

    Network coding for transport protocols

    Get PDF
    With the proliferation of smart devices that require Internet connectivity anytime, anywhere, and the recent technological advances that make it possible, current networked systems will have to provide a various range of services, such as content distribution, in a wide range of settings, including wireless environments. Wireless links may experience temporary losses, however, TCP, the de facto protocol for robust unicast communications, reacts by reducing the congestion window drastically and injecting less traffic in the network. Consequently the wireless links are underutilized and the overall performance of the TCP protocol in wireless environments is poor. As content delivery (i.e. multicasting) services, such as BBC iPlayer, become popular, the network needs to support the reliable transport of the data at high rates, and with specific delay constraints. A typical approach to deliver content in a scalable way is to rely on peer-to-peer technology (used by BitTorrent, Spotify and PPLive), where users share their resources, including bandwidth, storage space, and processing power. Still, these systems suffer from the lack of incentives for resource sharing and cooperation, and this problem is exacerbated in the presence of heterogenous users, where a tit-for-tat scheme is difficult to implement. Due to the issues highlighted above, current network architectures need to be changed in order to accommodate the usersÂż demands for reliable and quality communications. In other words, the emergent need for advanced modes of information transport requires revisiting and improving network components at various levels of the network stack. The innovative paradigm of network coding has been shown as a promising technique to change the design of networked systems, by providing a shift from how data flows traditionally move through the network. This shift implies that data flows are no longer kept separate, according to the Âżstore-and-forwardÂż model, but they are also processed and mixed in the network. By appropriately combining data by means of network coding, it is expected to obtain significant benefits in several areas of network design and architecture. In this thesis, we set out to show the benefits of including network coding into three communication paradigms, namely point-topoint communications (e.g. unicast), point-to-multipoint communications (e.g. multicast), and multipoint-to-multipoint communications (e.g. peer-to-peer networks). For the first direction, we propose a network coding-based multipath scheme and show that TCP unicast sessions are feasible in highly volatile wireless environments. For point-to-multipoint communications, we give an algorithm to optimally achieve all the rate pairs from the rate region in the case of degraded multicast over the combination network. We also propose a system for live streaming that ensures reliability and quality of service to heterogenous users, even if data transmissions occur over lossy wireless links. Finally, for multipoint-to-multipoint communications, we design a system to provide incentives for live streaming in a peer-to-peer setting, where users have subscribed to different levels of quality. Our work shows that network coding enables a reliable transport of data, even in highly volatile environments, or in delay sensitive scenarios such as live streaming, and facilitates the implementation of an efficient incentive system, even in the presence of heterogenous users. Thus, network coding can solve the challenges faced by next generation networks in order to support advanced information transport.Postprint (published version

    Machine Learning for Multimedia Communications

    Get PDF
    Machine learning is revolutionizing the way multimedia information is processed and transmitted to users. After intensive and powerful training, some impressive efficiency/accuracy improvements have been made all over the transmission pipeline. For example, the high model capacity of the learning-based architectures enables us to accurately model the image and video behavior such that tremendous compression gains can be achieved. Similarly, error concealment, streaming strategy or even user perception modeling have widely benefited from the recent learningoriented developments. However, learning-based algorithms often imply drastic changes to the way data are represented or consumed, meaning that the overall pipeline can be affected even though a subpart of it is optimized. In this paper, we review the recent major advances that have been proposed all across the transmission chain, and we discuss their potential impact and the research challenges that they raise

    Instantly Decodable Network Coding: From Centralized to Device-to-Device Communications

    Get PDF
    From its introduction to its quindecennial, network coding has built a strong reputation for enhancing packet recovery and achieving maximum information flow in both wired and wireless networks. Traditional studies focused on optimizing the throughput of the system by proposing elaborate schemes able to reach the network capacity. With the shift toward distributed computing on mobile devices, performance and complexity become both critical factors that affect the efficiency of a coding strategy. Instantly decodable network coding presents itself as a new paradigm in network coding that trades off these two aspects. This paper review instantly decodable network coding schemes by identifying, categorizing, and evaluating various algorithms proposed in the literature. The first part of the manuscript investigates the conventional centralized systems, in which all decisions are carried out by a central unit, e.g., a base-station. In particular, two successful approaches known as the strict and generalized instantly decodable network are compared in terms of reliability, performance, complexity, and packet selection methodology. The second part considers the use of instantly decodable codes in a device-to-device communication network, in which devices speed up the recovery of the missing packets by exchanging network coded packets. Although the performance improvements are directly proportional to the computational complexity increases, numerous successful schemes from both the performance and complexity viewpoints are identified

    Codage réseau pour des applications multimédias avancées

    Get PDF
    Network coding is a paradigm that allows an efficient use of the capacity of communication networks. It maximizes the throughput in a multi-hop multicast communication and reduces the delay. In this thesis, we focus our attention to the integration of the network coding framework to multimedia applications, and in particular to advanced systems that provide enhanced video services to the users. Our contributions concern several instances of advanced multimedia communications: an efficient framework for transmission of a live stream making joint use of network coding and multiple description coding; a novel transmission strategy for lossy wireless networks that guarantees a trade-off between loss resilience and short delay based on a rate-distortion optimized scheduling of the video frames, that we also extended to the case of interactive multi-view streaming; a distributed social caching system that, using network coding in conjunction with the knowledge of the users' preferences in terms of views, is able to select a replication scheme such that to provide a high video quality by accessing only other members of the social group without incurring the access cost associated with a connection to a central server and without exchanging large tables of metadata to keep track of the replicated parts; and, finally, a study on using blind source separation techniques to reduce the overhead incurred by network coding schemes based on error-detecting techniques such as parity coding and message digest generation. All our contributions are aimed at using network coding to enhance the quality of video transmission in terms of distortion and delay perceivedLe codage réseau est un paradigme qui permet une utilisation efficace du réseau. Il maximise le débit dans un réseau multi-saut en multicast et réduit le retard. Dans cette thèse, nous concentrons notre attention sur l’intégration du codage réseau aux applications multimédias, et en particulier aux systèmes avancès qui fournissent un service vidéo amélioré pour les utilisateurs. Nos contributions concernent plusieurs scénarios : un cadre de fonctions efficace pour la transmission de flux en directe qui utilise à la fois le codage réseau et le codage par description multiple, une nouvelle stratégie de transmission pour les réseaux sans fil avec perte qui garantit un compromis entre la résilience vis-à-vis des perte et la reduction du retard sur la base d’une optimisation débit-distorsion de l'ordonnancement des images vidéo, que nous avons également étendu au cas du streaming multi-vue interactive, un système replication sociale distribuée qui, en utilisant le réseau codage en relation et la connaissance des préférences des utilisateurs en termes de vue, est en mesure de sélectionner un schéma de réplication capable de fournir une vidéo de haute qualité en accédant seulement aux autres membres du groupe social, sans encourir le coût d’accès associé à une connexion à un serveur central et sans échanger des larges tables de métadonnées pour tenir trace des éléments répliqués, et, finalement, une étude sur l’utilisation de techniques de séparation aveugle de source -pour réduire l’overhead encouru par les schémas de codage réseau- basé sur des techniques de détection d’erreur telles que le codage de parité et la génération de message digest

    Bandwidth-efficient Video Streaming with Network Coding on Peer-to-Peer Networks

    Get PDF
    PhDOver the last decade, live video streaming applications have gained great popularity among users but put great pressure on video servers and the Internet. In order to satisfy the growing demands for live video streaming, Peer-to-Peer(P2P) has been developed to relieve the video servers of bandwidth bottlenecks and computational load. Furthermore, Network Coding (NC) has been proposed and proved as a significant breakthrough in information theory and coding theory. According to previous research, NC not only brings substantial improvements regarding throughput and delay in data transmission, but also provides innovative solutions for multiple issues related to resource allocation, such as the coupon-collection problem, allocation and scheduling procedure. However, the complex NC-driven P2P streaming network poses substantial challenges to the packet scheduling algorithm. This thesis focuses on the packet scheduling algorithm for video multicast in NC-driven P2P streaming network. It determines how upload bandwidth resources of peer nodes are allocated in different transmission scenarios to achieve a better Quality of Service(QoS). First, an optimized rate allocation algorithm is proposed for scalable video transmission (SVT) in the NC-based lossy streaming network. This algorithm is developed to achieve the tradeoffs between average video distortion and average bandwidth redundancy in each generation. It determines how senders allocate their upload bandwidth to different classes in scalable data so that the sum of the distortion and the weighted redundancy ratio can be minimized. Second, in the NC-based non-scalable video transmission system, the bandwidth ineffi- ciency which is caused by the asynchronization communication among peers is reduced. First, a scalable compensation model and an adaptive push algorithm are proposed to reduce the unrecoverable transmission caused by network loss and insufficient bandwidth resources. Then a centralized packet scheduling algorithm is proposed to reduce the unin- formative transmission caused by the asynchronized communication among sender nodes. Subsequently, we further propose a distributed packet scheduling algorithm, which adds a critical scalability property to the packet scheduling model. Third, the bandwidth resource scheduling for SVT is further studied. A novel multiple- generation scheduling algorithm is proposed to determine the quality classes that the receiver node can subscribe to so that the overall perceived video quality can be maxi- mized. A single generation scheduling algorithm for SVT is also proposed to provide a faster and easier solution to the video quality maximization function. Thorough theoretical analysis is conducted in the development of all proposed algorithms, and their performance is evaluated via comprehensive simulations. We have demon- strated, by adjusting the conventional transmission model and involving new packet scheduling models, the overall QoS and bandwidth efficiency are dramatically improved. In non-scalable video streaming system, the maximum video quality gain can be around 5dB compared with the random push method, and the overall uninformative transmiss- sion ratio are reduced to 1% - 2%. In scalable video streaming system, the maximum video quality gain can be around 7dB, and the overall uninformative transmission ratio are reduced to 2% - 3%

    Network streaming and compression for mixed reality tele-immersion

    Get PDF
    Bulterman, D.C.A. [Promotor]Cesar, P.S. [Copromotor
    • …
    corecore