325 research outputs found

    A Metropolitan Optical Network with Support for Multicasting in the Optical Domain

    Get PDF
    We present the FLAMINGO1 network architecture, an all-optical wavelength-and-timeslotted Metropolitan Optical Network based on a multiple-ring topology. A couple of important aspects of this architecture include all-optical packet switching at intermediate nodes on a ring and the ability to put IP packets directly over WDM channels. The rings of the network are interconnected with intelligent bridges, architecture of which is presented. The network also enables all-optical multicasting at intermediate nodes, the architecture of which is also presented. Power budget calculations have also been dealt with and discussed in detail

    Next Generation Reliable Transport Networks

    Get PDF

    Multicasting in WDM Single-Hop Local Lightwave Networks

    Get PDF
    In modem networks, the demand for bandwidth and high quality of service (QoS) requires the efficient utilisation of network resources such as transmitters, receivers and channel bandwidth. One method for conserving these resources is to employ efficient implementations of multicasting wherever possible. Using multicasting, a source sending a message to multiple destinations may schedule a single transmission which can then be broadcasted to multiple destinations or forwarded from one destination to another, thus conserving the source transmitter usage and channel bandwidth. This thesis investigates the behaviour of single-hop WDM optical networks when they carry multicast traffic. Each station in the network has a fixed-wavelength transceiver and is set to operate on its own unique wavelength as a control channel. Each station also has a tuneable wavelength transceiver in order to transmit or receive signals to or from all the other stations. A transmission on each channel is broadcasted by a star coupler to all nodes. Multicasting in single-hop WDM networks has been studied with different protocols. This thesis studies the multicasting performance adopting receiver collision avoidance (RCA) protocol as a multicasting protocol. This study takes into consideration the effect of the tuneable transceiver tuning time which is the time required to switch from one wavelength to another, and the propagation time required by a packet to propagate from one node to another. The strategy in RCA protocol is that nodes request transmission time by sending a control packet at the head of their queues. Upon receipt of this information all nodes run a deterministic distributed algorithm to schedule the transmission of the multicast packet. With the control information, nodes determine the earliest time at which all the members of the multicast group can receive the packet and the earliest time at which it can be transmitted. If a node belongs to the multicast group addressed in the control packet, its receiver must become idle until all nodes in the group have tuned to the appropriate wavelength to receive the packet. This problem leads to poor transmission and consequently low channel utilisation. However, throughput degradation due to receiver conflicts decreases as the multicast size increases. This is because for a given number of channels, the likelihood of a receiver being idle decreases as the number of intended recipients per transmission increases. The number of wavelengths available in a WDM network continues to be a major constraint. Thus in order to support a large number of end users, such networks must use and reuse wavelengths efficiently. This thesis also examines the number of wavelengths needed to support multicasting in single-hop optical networks

    Enhanced WDM-OFDM-PON System Based on Higher Data Transmitted with Modulation Technique

    Get PDF
    ABSTRACT:- Studies among the field communication system existing technique and proposes and by experimentation demonstrate a multiuser wavelengthdivision-multiplexing passive optical network (WDM-PON) system combining with orthogonal frequency division multiple (OFDM) technique. A tunable multiwavelength optical comb is intended to provide flat optical lines for helping the configuration of the multiple source-free optical network units WDM-OFDM-PON system supported normal single-mode fiber (SSMF). In WDM based on fiber, optical network communications using wavelength with multiplex or demultiplex may be a technology that multiplexes a variety of optical carrier signals onto one fiber by victimization completely different wavelengths of optical device lightweight. this system allows bidirectional communications over one strand of fiber, also as multiplication of capability and calculate BER (Bit Error Rate) and OSNR (optical signal noise ratio) finally; a comparison of by experimentation achieved receiver sensitivities and transmission distances victimization these receivers is given. The very best spectral potency and longest transmission distance at the very best bit rate. WDM based applications like transmission data, medical imaging data, and digital audio data and video conferencing data are information measure-intensive with the Advance in optical technology providing verdant bandwidth, it's natural to increase the multicast construct to optical networks so as to realize increased performance. Our projected scheme (PGA) based on information load transmitted capability improve supported higher information transmitted over these channels and high data up to develop in Matlab tool and using optical Interleaved the OFDM model and analysis the performance of the WDM-PON system

    Measurement Based Reconfigurations in Optical Ring Metro Networks

    Get PDF
    Single-hop wavelength division multiplexing (WDM) optical ring networks operating in packet mode are one of themost promising architectures for the design of innovative metropolitan network (metro) architectures. They permit a cost-effective design, with a good combination of optical and electronic technologies, while supporting features like restoration and reconfiguration that are essential in any metro scenario. In this article, we address the tunability requirements that lead to an effective resource usage and permit reconfiguration in optical WDM metros.We introduce reconfiguration algorithms that, on the basis of traffic measurements, adapt the network configuration to traffic demands to optimize performance. Using a specific network architecture as a reference case, the paper aims at the broader goal of showing which are the advantages fostered by innovative network designs exploiting the features of optical technologies

    Efficient fault-tolerant routing in multihop optical WDM networks

    Get PDF
    This paper addresses the problem of efficient routing in unreliable multihop optical networks supported by Wavelength Division Multiplexing (WDM). We first define a new cost model for routing in (optical) WDM networks that is more general than the existing models. Our model takes into consideration not only the cost of wavelength access and conversion but also the delay for queuing signals arriving at different input channels that share the same output channel at the same node. We then propose a set of efficient algorithms in a reliable WDM network on the new cost model for each of the three most important communication patterns - multiple point-to-point routing, multicast, and multiple multicast. Finally, we show how to obtain a set of efficient algorithms in an unreliable WDM network with up to f faulty optical channels and wavelength conversion gates. Our strategy is to first enhance the physical paths constructed by the algorithms for reliable networks to ensure success of fault-tolerant routing, and then to route among the enhanced paths to establish a set of fault-free physical routes to complete the corresponding routing request for each of the communication patterns.published_or_final_versio
    corecore